Summary

大豆毛根转化基因功能分析

Published: May 05, 2023
doi:

Summary

在这里,我们提出了一种高效生产转基因大豆毛根的方案。

Abstract

大豆(Glycine max)是一种有价值的农业作物,具有数千种工业用途。大豆根系是与土壤传播微生物相互作用的主要场所,这些微生物形成共生以固定氮和病原体,这使得涉及大豆根遗传学的研究对于提高其农业生产至关重要。大豆毛根(HRs)的遗传转化由根 茎农杆菌 菌株NCPPB2659(K599)介导,是研究大豆根系基因功能的有效工具,从开始到结束仅需2个月。在这里,我们提供了一个详细的协议,概述了在大豆HR中过表达和沉默目的基因的方法。该方法包括大豆种子灭菌,用K599感染子叶,以及选择和收获基因转化的HR进行RNA分离,并在必要时进行代谢物分析。该方法的通量足以同时研究多个基因或网络,并且可以在致力于长期稳定的转化方法之前确定最佳工程策略。

Introduction

大豆(Glycine max)是农业中最有价值的作物之一。它具有数以千计的商业和工业用途,例如食品,动物饲料,油,并作为制造原料的来源1。它与固氮土壤微生物(即根瘤菌)形成共生关系的能力进一步提升了研究大豆遗传学的重要性2。例如,微调大豆根系的固氮特性可以减少碳排放,并大大降低对氮肥的需求3。因此,特别是了解控制大豆根生物学方面的遗传学在农业和工业中具有广泛的应用。考虑到这些好处,有一个可靠的方案来分析大豆基因的功能是很重要的。

根癌农杆菌可能是植物遗传转化最常用的工具,因为它具有将转移DNA(T-DNA)整合到许多植物物种的核基因组中的能力。当农杆菌感染植物时,它将肿瘤诱导(Ti)质粒转移到宿主染色体中,导致在感染部位形成肿瘤。几十年来,农杆菌介导的转化已被广泛用于基因功能分析和修改作物性状4。尽管任何目的基因都可以通过根癌曲霉介导的转化轻松转移到宿主植物细胞中,但这种方法有几个缺点;它耗时、昂贵,并且需要对大豆等许多植物物种提供广泛的专业知识。虽然少数品种的大豆可以通过使用根癌农杆菌的子叶节点方法进行转化,但这种方法的低效率需要一种快速高效的替代遗传转化技术4,5。即使是非专家也可以使用这种根茎农杆菌介导的毛根(HR)转化方法来克服这些缺点。

HR转化是一种相对快速的工具,不仅用于分析基因功能,还用于生物技术应用,例如生产专门的代谢物和精细化学品,以及复杂的生物活性糖蛋白6。大豆HR的生产不需要广泛的专业知识,因为它们可以通过伤害子叶表面,然后接种根 茎农杆菌7来产生。 A. rhizogenes 表达由其Ti质粒编码的毒力(Vir)基因,该质粒转移,携带并将其T-DNA片段整合到植物细胞的基因组中,同时刺激异位根生长8

与其他大豆基因表达系统(例如基于生物利斯特或根癌农杆菌的组织、细胞和器官培养转化)相比,HR表达系统具有几个优点。首先,HR在遗传上是稳定的,并且在无激素培养基快速产生1,9,10。此外,HR可以产生相当于或大于天然根11,12的特化代谢物。这些优点使HRs成为与根癌曲霉不相容或需要特殊组织培养条件以形成相容组织的植物物种的理想生物技术工具。HR 方法是一种使用 RNA 测序13,14,15 分析蛋白质-蛋白质相互作用、蛋白质亚细胞定位、重组蛋白质生产、植物修复、诱变和全基因组效应的有效方法。它还可用于研究在工业中具有价值的专用代谢物的生产,包括甘氨酸,其药物可预防大豆对重要的微生物病原体霉,并在人类中具有令人印象深刻的抗癌和神经保护活性16,17

本报告展示了一种简单、高效的生产大豆 HR 的方案。 与以前的 HR 转化方法相比,该方案通过在接种大豆子叶之前预先筛选根 茎变形 体中存在 Ti 质粒的 HR 形成率,显着提高了 (33%-50%)。我们通过转换几种过表达或沉默大豆转录因子基因的二元载体来证明该协议的适用性。

Protocol

注意:建议所有后续步骤在无菌条件下进行。 1.大豆种子杀菌 在生物安全柜中,将 16-20 圆形威廉姆斯 82 大豆种子置于原始状态(即无裂缝或瑕疵)中 50 mL 离心管中。 加入 30 mL 的 70% 异丙醇,轻轻摇晃 30 秒,然后倒出酒精。 用30mL的10%漂白剂轻轻摇动种子10秒,并使种子在室温(室温,25°C)下在溶液中静置5分钟。5分钟后,沥干漂白剂。</…

Representative Results

代表性结果来自已发表的数据19,20。转化的K599农杆菌的菌落PCR(cPCR)结果如图1所示。如图1中的阳性菌落所示,通过cPCR检测目的基因(图1A)。然而,三分之一到一半的菌落对VirD2基因筛选呈阴性(图1B),表明Ti质粒丢失,并且无法产生愈伤组织或?…

Discussion

在过去的十年中,大豆HR方法已被开发为研究参与固氮22,23,生物和非生物胁迫耐受性24,25以及代谢物生物合成途径26,27的基因的有力工具。植物如何产生代谢物的知识对农业生产和制药工业有很多好处,因为它可用于研究参与介导对病原体的生化防御的基因网络<sup …

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项研究由加拿大自然科学和工程研究委员会(NSERC)资助号RGPIN-2020-06111和Brad Lace的慷慨捐赠。我们要感谢Wayne Parrott (佐治亚大学)提供K599农杆菌和初步方案,感谢Nakagawa&Hachiya实验室(岛根大学)提供pGWB2,pGWB6和pANDA35HK空载体。

Materials

Acetosyringone Cayman 23224
Bleach lavo 21124
DMSO Fisher bioreagents 195679
Gelzan Phytotech HYY3251089A
Hygromycin Phytotech HHA0397050B
Isopropyl alcohol Fisher chemical 206462
Kanamycin Phytotech SQS0378007G
LB powder Fisher bioreagents 200318
MS powder Caisson labs 2210001
Na2HPO4 Fisher bioreagents 194171
NaCl Fisher chemical 192946
Petri dishes Fisherbrand 08-757-11 100 mm x 25 mm
Phosphinothricin Cedarlane P034-250MG
REDExtract-N-Amp PCR Kit Sigma R4775
Sucrose Bioshop 2D76475
Timentin Caisson labs 12222002
Vitamins Caisson labs 2211010

References

  1. Li, S., et al. Optimization of Agrobacterium-mediated transformation in soybean. Frontiers in Plant Science. 8, 246 (2017).
  2. Elhady, A., Hallmann, J., Heuer, H. Symbiosis of soybean with nitrogen fixing bacteria affected by root lesion nematodes in a density-dependent manner. Scientific Reports. 10, 1619 (2020).
  3. Huang, X. -. F., et al. Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany. 92 (4), 267-275 (2014).
  4. Ma, H., et al. Highly efficient Agrobacterium rhizogenes-mediated genetic transformation and applications in citrus. Frontiers in Plant Science. 13, 1039094 (2022).
  5. Hwang, H. -. H., Yu, M., Lai, E. -. M. Agrobacterium-mediated plant transformation: biology and applications. The Arabidopsis Book. 15, e0186 (2017).
  6. Gutierrez-Valdes, N., et al. Hairy root cultures-a versatile tool with multiple applications. Frontiers in Plant Science. 11, 33 (2020).
  7. Ono, N. N., Tian, L. The multiplicity of hairy root cultures: prolific possibilities. Plant Science. 180 (3), 439-446 (2011).
  8. Kereszt, A., et al. Agrobacterium rhizogenes-mediated transformation of soybean to study root biology. Nature Protocols. 2 (4), 948-952 (2007).
  9. Chen, L., et al. Soybean hairy roots produced in vitro by Agrobacterium rhizogenes-mediated transformation. The Crop Journal. 6 (2), 162-171 (2018).
  10. Song, J., Tóth, K., Montes-Luz, B., Stacey, G. Soybean hairy root transformation: a rapid and highly efficient method. Current Protocols. 1 (7), e195 (2021).
  11. Fattahi, F., Shojaeiyan, A., Palazon, J., Moyano, E., Torras-Claveria, L. Methyl-β-cyclodextrin and coronatine as new elicitors of tropane alkaloid biosynthesis in Atropa acuminata and Atropa belladonna hairy root cultures. Physiologia Plantarum. 172 (4), 2098-2111 (2021).
  12. Farrell, K., Jahan, M., Kovinich, N. Distinct mechanisms of biotic and chemical elicitors enable additive elicitation of the anticancer Phytoalexin Glyceollin I. Molecules. 22 (8), 1261 (2017).
  13. Cheng, Y., et al. Highly efficient Agrobacterium rhizogenes-mediated hairy root transformation for gene functional and gene editing analysis in soybean. Plant Methods. 17 (1), 73 (2021).
  14. Arora, D., et al. Establishment of proximity-dependent biotinylation approaches in different plant model systems. Plant Cell. 32 (11), 3388-3407 (2020).
  15. Gomes, C., Dupas, A., Pagano, A., Grima-Pettenati, J., Paiva, J. A. P. Hairy root transformation: a useful tool to explore gene function and expression in Salix spp. recalcitrant to transformation. Frontiers in Plant Science. 10, 1427 (2019).
  16. Ahmed, S., Kovinich, N. Regulation of phytoalexin biosynthesis for agriculture and human health. Phytochemistry Reviews. 20, 483-505 (2021).
  17. Walker, R. R., et al. Glyceollins trigger anti-proliferative effects in hormone-dependent aromatase-inhibitor-resistant breast cancer cells through the induction of apoptosis. International Journal of Molecular Sciences. 23 (5), 2887 (2022).
  18. Tong, X., et al. The complete genome sequence of cucumopine-type Agrobacterium rhizogenes strain K599 (NCPPB2659), a nature’s genetic engineer inducing hairy roots. International Journal of Agriculture Biology. 20 (5), 1167-1174 (2018).
  19. Lin, J., et al. RNA-Seq dissects incomplete activation of phytoalexin biosynthesis by the soybean transcription factors GmMYB29A2 and GmNAC42-1. Plants. 12 (3), 545 (2023).
  20. Jahan, M. A., et al. Glyceollin transcription factor GmMYB29A2 regulates soybean resistance to Phytophthora sojae. Plant Physiology. 183 (2), 530-546 (2020).
  21. Jahan, M. A., et al. The NAC family transcription factor GmNAC42-1 regulates biosynthesis of the anticancer and neuroprotective glyceollins in soybean. BMC Genomics. 20, 149 (2019).
  22. Nguyen, C. X., et al. Critical role for uricase and xanthine dehydrogenase in soybean nitrogen fixation and nodule development. The Plant Genome. , e20171 (2021).
  23. Brear, E. M., et al. GmVTL1a is an iron transporter on the symbiosome membrane of soybean with an important role in nitrogen fixation. New Phytologist. 228 (2), 667-681 (2020).
  24. Chen, Z., et al. Overexpression of transcription factor GmTGA15 enhances drought tolerance in transgenic soybean hairy roots and Arabidopsis plants. Agronomy. 11 (1), 170 (2021).
  25. Savka, M., Ravillion, B., Noel, G., Farrand, S. Induction of hairy roots on cultivated soybean genotypes and their use to propagate the soybean cyst nematode. Phytopathology. 80 (5), 503-508 (1990).
  26. Subramanian, S., Graham, M. Y., Yu, O., Graham, T. L. RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae. Plant Physiology. 137 (4), 1345-1353 (2005).
  27. Sharma, A. R., Gajurel, G., Ahmed, I., Roedel, K., Medina-Bolivar, F. Induction of the prenylated stilbenoids arachidin-1 and arachidin-3 and their semi-preparative separation and purification from hairy root cultures of peanut (Arachis hypogaea l.). Molecules. 27 (18), 6118 (2022).
  28. Lozovaya, V. V., et al. Isoflavonoid accumulation in soybean hairy roots upon treatment with Fusarium solani. Plant Physiology Biochemistry. 42 (7-8), 671-679 (2004).
  29. Rahimi Khonakdari, M., Rezadoost, H., Heydari, R., Mirjalili, M. H. Effect of photoperiod and plant growth regulators on in vitro mass bulblet proliferation of Narcissus tazzeta L. (Amaryllidaceae), a potential source of galantamine. Plant Cell, Tissue, and Organ Culture. 142 (1), 187-199 (2020).

Play Video

Citer Cet Article
Lin, J., Wi, D., Ly, M., Jahan, M. A., Pullano, S., Martirosyan, I., Kovinich, N. Soybean Hairy Root Transformation for the Analysis of Gene Function. J. Vis. Exp. (195), e65485, doi:10.3791/65485 (2023).

View Video