Summary

使用富集微球与有限消化相结合的宿主细胞蛋白分析

Published: January 19, 2024
doi:

Summary

提出了一种从药物产品(DP)中富集宿主细胞蛋白(HCP)和使用蛋白质组富集珠检测肽的方案。该方法使用内部制造的单克隆抗体 (mAb) 原料药 (DS) 进行演示,该物质是一种表征良好的参考物质,用于评估和比较不同方法的性能。

Abstract

宿主细胞蛋白 (HCP) 是会对治疗性蛋白质产生不利影响的杂质,即使是少量的。为了评估与药品相关的潜在风险,已经开发了识别低丰度HCP的方法。开发灵敏的HCP检测方法的一个关键方法是利用液相色谱-质谱联用(LC-MS)在分析前富集HCP,同时去除单克隆抗体(mAb)。

该协议提供了使用市售蛋白质组富集珠富集宿主细胞蛋白的详细说明。这些磁珠包含对不同蛋白质具有特异性亲和力的多种六肽配体库。该方案还包括使用纳米LC-MS/MS进行有限的酶解和随后的肽检测。通过采用这些技术,低丰度的HCP可以富集超过7000倍,从而获得低至0.002 ppm的令人印象深刻的检测限。值得注意的是,该协议能够使用 NIST mAb 以高置信度检测 850 个 HCP。此外,它被设计为用户友好型,并包括一个视频演示,以协助其实施。通过遵循这些步骤,研究人员可以有效地富集和检测HCP,提高药品风险评估的灵敏度和准确性。

Introduction

宿主细胞蛋白 (HCP) 是从宿主生物体的细胞培养物中释放出来并与单克隆抗体 (mAb) 共纯化的杂质1,2,3,4。痕量HCPs会对药品的质量产生负面影响5,6,7,8,9,10,11,12,13,14,15,因此需要一种灵敏的HCP分析方法来检测亚ppm至ppm水平的HCP。

正交方法可用于检测低丰度的 HCP。酶联免疫吸附测定 (ELISA) 通常用于定量整体 HCP,如果有相应的抗体,它也可以检测和定量单个 HCP16。然而,HCP特异性抗体的生产既费时又费力。相比之下,液相色谱-质谱联用(LC-MS)可以提供有关单克隆抗体药物产品中单个HCP的全面信息,并广泛用于HCP鉴定4,7,9,10,12,13,14,15,17,18,19,20 21、22、23、24、252627

已经开发了几种使用 LC-MS/MS 检测 HCP 的方法,包括有限酶切20、过滤17、蛋白 A 缺失21、免疫沉淀 (IP) 和 ProteoMiner 富集 (PM)18。大多数方法旨在减少mAb的用量,并在LC-MS/MS分析之前富集HCP,从而减小mAb肽和HCP肽之间的动态范围。该协议提出了一种蛋白质组学样品富集方法,该方法结合了 ProteoMiner 技术和有限消化 (PMLD)28。ProteoMiner 富集原理涉及使用市售的蛋白质组富集微球,其中包含多种组合肽配体库。这些配体特异性地与抗体药物产品上的蛋白质结合,从而去除多余的分子,同时将低丰度宿主细胞蛋白 (HCP) 集中在它们各自的亲和配体上。另一方面,有限消化的原理涉及使用低浓度的胰蛋白酶。该浓度足以消化低丰度的HCP,但不足以消化所有抗体药物产品。这种方法能够从溶液中回收和富集消化的HCP肽。

与过滤方法相比,PMLD技术不受检测到的HCPs大小的限制17。蛋白 A 缺失方法特异性地检测与抗体相关的 HCP21,而免疫沉淀仅限于来自特定细胞系(例如中国仓鼠卵巢 (CHO) 细胞系)的预定义 HCP,其中产生抗 HCP 抗体4。相比之下,PMLD可用于检测来自任何药物模块的HCP,以及与来自不同细胞系的药物产品共同纯化的宿主细胞蛋白。此外,与上述方法相比,PMLD 表现出更好的灵敏度1718202124

这种方法可以将HCP浓度富集7000倍,并将检测限降低到0.002 ppm28。实验设置如图 1所示。

Protocol

协议中使用的缩写列于 补充表1中。 1. 溶液和缓冲液的制备 注:所有试剂的商业细节均列在 材料表中。 通过将 1 mL 的 1 M Tris-HCl(pH 8.0)加入玻璃小瓶中的 9 mL 去离子水中,制备 0.1 M Tris-HCl(pH 8.0)溶液,并通过涡旋充分混合。在4°C下储存长达3个月。 通过将 10 mg SDC 溶解在 1 mL 的 0.1 M Tris-HCl(pH 8.0)…

Representative Results

该协议提供了一种样品制备工作流程,称为蛋白质富集与有限消化(PMLD)相结合,用于分析单克隆抗体(mAb)样品中的宿主细胞蛋白(HCP)。图 1 说明了 PMLD 的分步过程。研究人员比较了使用直接消化(如图 2 顶部面板所示)和 PMLD(如图 2 底部面板所示)的 HCP 分析结果。总离子色谱图(TIC)图谱表明,PMLD显著减少或消除了主?…

Discussion

市售的蛋白质富集微球有两种版本:一种容量较小,另一种容量较大(参见 材料表)。两种版本的富集微球在包装中都含有十种制备物。制造商的说明表明,小容量试剂盒中的每个制备都可用于富集 10 mg 总蛋白。然而,为了实现 DS 宿主细胞蛋白 (HCP) 富集的最佳性能,每次制备都适合 5 个 DS 样品。因此,每个试剂盒可用于从 50 个样品中富集 HCP。对于大容量试剂盒的每种制备方法…

Divulgations

The authors have nothing to disclose.

Acknowledgements

没有。

Materials

16 G, Metal Hub Needle, 2 in, point style 3 Hamilton 91016
Acclaim PepMap 100 C18 trap column (20 cm × 0.075 mm) Thermo Fisher 164535
Acetonitrile Fisher-Scientific A955
Acetonitrile with 0.1% Formic Acid (v/v), Optima LC/MS Grade  Fisher-Scientific LS120-4
Amicon Ultra-0.5 Centrifugal Filter Unit Millipore Sigma UFC5010
C18 analytical column (0.075 mm × 1.7 μm × 30 cm, 100 Å) CoAnn Technologies HEB07503001718I
Centrifuge 5424 Eppendorf 5405000646
Dithiothreitol (DTT)  Thermo Fisher A39255
Frit for SPE cartridges, 9.5 mm, 3 mL, 100/pk Agilent 12131020
GL-Tip GC GL Sciences Inc   7820-11201
in-house mAb Regeneron concentration 200 mg/mL
Iodoacetamide (30 x 9.3 mg) Thermo Fisher A39271
Isopropanol Fisher-Scientific 149320025
L-Histidine Sigma Aldrich H6034
L-Histidine monohydrochloride monohydrate Sigma Aldrich 53370
Methanol Fisher-Scientific A456-4 
Milli-Q Millpore 30035
NanoDrop 2000 Thermo Scientific ND-2000
Orbitrap Exploris 480 Thermo Fisher BRE725539
Protein LoBind Tube 0.5 mL Eppendorf (VWR) 22431064
Protein LoBind Tube 2.0 mL Eppendorf (VWR) 22431102
Proteome Discoverer software 2.4 Thermo Scientific
ProteoMiner Protein Enrichment Large-Capacity Kit Bio-Rad 1633007
ProteoMiner Protein Enrichment Small-Capacity Kit Bio-Rad 1633006
Sodium deoxycholate (SDC) Sigma Aldrich D6750
Sodium lauroyl sarcosinate (SLS)  Sigma Aldrich L5777
SpeedVac Labconco 7970010
Thermomixer R Eppendorf 22670107
Trifluoracetic acid (TFA) Fisher-Scientific 28904
Trypsin (Sequencing Grade Modified)  (5 x 20 ug) Promega V5111
Tube Revolver Rotator Thermo Fisher 88881001
UltiMate 3000 RSLC nano system Thermo Fisher ULTIM3000RSLCNANO
UltraPure 1 M Tris-HCl pH 8.0 Thermo Fisher 15568-025
Vortex Genie 2 VWR 102091-234
Water with 0.1% Formic Acid (v/v), Optima LC/MS Grade  Fisher-Scientific LS118-4 

References

  1. Aboulaich, N. A novel approach to monitor clearance of host cell proteins associated with monoclonal antibodies. Biotechnology Progress. 30 (5), 1114-1124 (2014).
  2. Goey, C. H., Alhuthali, S., Kontoravdi, C. Host cell protein removal from biopharmaceutical preparations: Towards the implementation of quality by design. Biotechnology Advances. 36 (4), 1223-1237 (2018).
  3. Levy, N. E., Valente, K. N., Choe, L. H., Lee, K. H., Lenhoff, A. M. Identification and characterization of host cell protein product-associated impurities in monoclonal antibody bioprocessing. Biotechnology and Bioengineering. 111 (5), 904-912 (2014).
  4. Molden, R. Host cell protein profiling of commercial therapeutic protein drugs as a benchmark for monoclonal antibody-based therapeutic protein development. MAbs. 13 (1), 1955811 (2021).
  5. Bee, J. S. Trace levels of the CHO host cell protease cathepsin D caused particle formation in a monoclonal antibody product. Biotechnology Progress. 31 (5), 1360-1369 (2015).
  6. Bracewell, D. G., Francis, R., Smales, C. M. The future of host cell protein (HCP) identification during process development and manufacturing linked to a risk-based management for their control. Biotechnology and Bioengineering. 112 (9), 1727-1737 (2015).
  7. Chiu, J., et al. Knockout of a difficult-to-remove CHO host cell protein, lipoprotein lipase, for improved polysorbate stability in monoclonal antibody formulations. Biotechnology and Bioengineering. 114 (5), 1006-1015 (2017).
  8. Gilgunn, S., et al. Identification and tracking of problematic host cell proteins removed by a synthetic, highly functionalized nonwoven media in downstream bioprocessing of monoclonal antibodies. Journal of Chromatography A. 1595, 28-38 (2019).
  9. Graf, T. Identification and characterization of polysorbate-degrading enzymes in a monoclonal antibody formulation. Journal of Pharmaceutical Sciences. 110 (11), 3558-3567 (2021).
  10. Hall, T., Sandefur, S. L., Frye, C. C., Tuley, T. L., Huang, L. Polysorbates 20 and 80 degradation by group XV lysosomal phospholipase A2 isomer X1 in monoclonal antibody formulations. Journal of Pharmaceutical Sciences. 105 (5), 1633-1642 (2016).
  11. Jones, M. 34;High-risk" host cell proteins (HCPs): A multi-company collaborative view. Biotechnology and Bioengineering. 118 (8), 2870-2885 (2021).
  12. Li, X., et al. Identification and characterization of a residual host cell protein hexosaminidase B associated with N-glycan degradation during the stability study of a therapeutic recombinant monoclonal antibody product. Biotechnology Progress. 37 (3), e3128 (2021).
  13. Zhang, S. Identification of the specific causes of polysorbate 20 degradation in monoclonal antibody formulations containing multiple lipases. Pharmaceutical Research. 39 (1), 75-87 (2022).
  14. Zhang, S., Xiao, H., Li, N. Degradation of polysorbate 20 by Sialate O-Acetylesterase in monoclonal antibody formulations. Journal of Pharmaceutical Sciences. 110 (12), 3866-3873 (2021).
  15. Zhang, S., Xiao, H., Molden, R., Qiu, H., Li, N. Rapid polysorbate 80 degradation by liver carboxylesterase in a monoclonal antibody formulated drug substance at early stage development. Journal of Pharmaceutical Sciences. 109 (11), 3300-3307 (2020).
  16. Gunawan, F. Comparison of platform host cell protein ELISA to process-specific host cell protein ELISA. Biotechnology and Bioengineering. 115 (2), 382-389 (2018).
  17. Chen, I. H., Xiao, H., Daly, T., Li, N. Improved host cell protein analysis in monoclonal antibody products through molecular weight cutoff enrichment. Analytical Chemistry. 92 (5), 3751-3757 (2020).
  18. Chen, I. H., Xiao, H., Li, N. Improved host cell protein analysis in monoclonal antibody products through ProteoMiner. Analytical Biochemistry. 610, 113972 (2020).
  19. Doneanu, C. E., et al. Enhanced detection of low-abundance host cell protein impurities in high-purity monoclonal antibodies down to 1 ppm using ion mobility mass spectrometry coupled with multidimensional liquid chromatography. Analytical Chemistry. 87 (20), 10283-10291 (2015).
  20. Huang, L., et al. A Novel sample preparation for shotgun proteomics characterization of HCPs in antibodies. Analytical Chemistry. 89 (10), 5436-5444 (2017).
  21. Johnson, R. O., Greer, T., Cejkov, M., Zheng, X., Li, N. Combination of FAIMS, Protein A depletion, and native digest conditions enables deep proteomic profiling of host cell proteins in monoclonal antibodies. Analytical Chemistry. 92 (15), 10478-10484 (2020).
  22. Kreimer, S. Host cell protein profiling by targeted and untargeted analysis of data independent acquisition mass spectrometry data with parallel reaction monitoring verification. Analytical Chemistry. 89 (10), 5294-5302 (2017).
  23. Madsen, J. A., et al. Toward the complete characterization of host cell proteins in biotherapeutics via affinity depletions, LC-MS/MS, and multivariate analysis. MAbs. 7 (6), 1128-1137 (2015).
  24. Nie, S. Simple and sensitive method for deep profiling of host cell proteins in therapeutic antibodies by combining ultra-low trypsin concentration digestion, long chromatographic gradients, and boxcar mass spectrometry acquisition. Analytical Chemistry. 93 (10), 4383-4390 (2021).
  25. Yang, F. Versatile LC-MS-Based workflow with robust 0.1 ppm sensitivity for identifying residual HCPs in biotherapeutic products. Analytical Chemistry. 94 (2), 723-731 (2022).
  26. Zhang, Q. Comprehensive tracking of host cell proteins during monoclonal antibody purifications using mass spectrometry. MAbs. 6 (3), 659-670 (2014).
  27. Zhang, S., et al. Putative phospholipase B-Like 2 is not responsible for polysorbate degradation in monoclonal antibody drug products. Journal of Pharmaceutical Sciences. 109 (9), 2710-2718 (2020).
  28. Zhang, J., He, J., Smith, K. J. Fatty acids can induce the formation of proteinaceous particles in monoclonal antibody formulations. Journal of Pharmaceutical Sciences. 111 (3), 655-662 (2022).
  29. Uniprot1. . , (2023).
  30. Uniprot2. . , (2023).

Play Video

Citer Cet Article
Zhang, S., Xiao, H., Li, N. Host Cell Protein Analysis using Enrichment Beads Coupled with Limited Digestion. J. Vis. Exp. (203), e65544, doi:10.3791/65544 (2024).

View Video