Summary

角膜缘生态位细胞的分离和鉴定

Published: October 27, 2023
doi:

Summary

在这里,我们提出了一种分离和鉴定人类角膜缘生态位细胞的方案。

Abstract

在这里,我们报告了分离和鉴定角膜缘生态位细胞(LNC)的标准程序。从眼库获得的角膜缘组织用于LNCs分离。在无菌条件下将组织分成12块,并在37°C下在细胞培养箱中消化18小时,使用胶原酶A获得具有LNC和角膜缘上皮祖细胞的细胞簇。使用0.25%胰蛋白酶-EDTA在37°C下进一步消化细胞簇15分钟以获得单细胞,然后在涂有5%基质凝胶的塑料表面上在改良的胚胎干细胞培养基(MESCM)中培养。细胞在 70% 汇合时传代,并使用免疫荧光、实时定量 PCR (qPCR) 和流式细胞术鉴定 LNC。原代 LNC 被分离并传代超过 12 次。从P4到P6的LNCs增殖活性最高。LNCs表达的干细胞标志物高于BMMSC(SCF、Nestin、Rex1、SSEA4、CD73、CD90、MSX1、P75NTR和PDGFRβ)。结果显示,P4 LNCs均均匀表达VIM、CD90、CD105和PDGFRβ,但不均匀表达Pan-CK,可作为LNCs鉴定的标志物。 流式细胞分析显示,约95%、97%、92%和11%的LNCs分别表达CD73、CD90、CD105和SCF,而在BMMSCs中分别表达68%、99%、20%和3%。LNCs分离鉴定的标准工艺可为LNCs的广泛应用提供可靠的实验室依据。

Introduction

角膜上皮干细胞缺乏症(CESD),也称为角膜缘干细胞缺乏症(LSCD)1,角膜上皮再生(CES)的发病率因角膜感染和损伤而变得越来越紧迫。如果治疗不当,CESD可能导致失明,需要角膜移植。因此,CES再生变得越来越重要。有一组称为角膜缘生态位细胞 (LNC) 的支持细胞为 CES 功能提供必要的支持。角膜缘基质干细胞首先由Polisetty等2分离,Xie等3鉴定为LNC,定位于角膜缘的角膜缘上皮和角膜缘的基质。LNCs是角膜边缘的关键支持干细胞,具有骨髓来源的MSCs(BMMSCs)的功能,可诱导发育成角膜上皮细胞和角膜基质细胞3,4,5,6,7。先前的研究表明,LNCs的干细胞质量比BMMSCs8更原始,BMMSCs8已经在临床上被广泛使用。LNC甚至可能成为继MSC之后的下一个可行选择,特别是用于治疗CESD。作为CES的重要支持细胞,LNC也是源自角膜缘“生态位”结构的干细胞。LNC 可能在成熟角膜上皮细胞 (MCEC) 向 CES9 的去分化中发挥关键作用。然而,对LNCs的研究仍然相对不足,对LNCs的术语、分离、纯化、鉴定和特性尚未达成共识。一些研究人员将 LNC 命名为角膜缘活检来源的基质干细胞10、角膜缘间充质干细胞11、角膜缘成纤维细胞干细胞 12 和角膜缘间充质基质细胞13由于LNCs的生长特性尚未详细描述,且由于其科学和临床应用前景广阔,并且可能是未来最重要的临床工具之一,因此有必要总结LNCs的分离、纯化、鉴定和特性。

根据先前的一项研究14,LNC主要存在于角膜缘上皮下和角膜缘的基质中。该方案包括使用胶原酶A处理角膜缘组织,获得由LEPC和LNC组成的簇,并将其消化成含有0.25%胰蛋白酶-EDTA(TE)的单细胞。然后将LNCs选择性地培养在改良的胚胎干细胞培养基(MESCM)中进行纯化。本文报道的方案简单,在大量获得人LNCs方面具有很高的效率。

视频中记录了LNC分离、培养和鉴定的详细过程,供对LNC研究感兴趣的科学家使用,必要时可以方便地重复。

Protocol

年龄在50至60岁之间的供体的角膜缘组织来自同济医院(中国武汉)红十字眼库。该协议得到了同济伦理委员会的批准,并按照《赫尔辛基宣言》进行。 1. 隔离 从中期角膜储存培养基中获取角膜缘组织,并在超洁净工作台上在无菌条件下操作。 使用无菌手术圆刀片刮擦并去除角膜周围的虹膜和内皮。 用手术刀片将角膜缘组织切成十二个大?…

Representative Results

LNC的成长如上所述,根据胶原酶A(2mg / mL)消化角膜巩膜边缘组织的酶切方法成功分离LNC(图1)。与先前报道的研究3一致,在胶原酶A消化后,在显微镜下观察到毛毛虫样簇(图2)。纺锤体细胞的比例随着细胞传代而逐渐增加。纺锤形细胞可以在包被的 5% 基底膜基质板上生长,这与在没有包被基底膜基质<sup class="xref"…

Discussion

角膜透明度通常通过角膜基质中小纤维(直径 25-30 nm)的规则排列和分布来维持,这对于正常视力至关重要16。全世界有 2.53 亿视障者,其中 3600 万人是盲人17.世界卫生组织 (WHO) 认为角膜盲是人类视力最严重的危害之一,占全球所有失明的 5.1%16。CES正常的角膜上皮缺损可以快速愈合而不会留下疤痕18。据估计,全球有超过…

Divulgations

The authors have nothing to disclose.

Acknowledgements

感谢王伟、徐玲娟、刘荣对这项工作的指导,感谢谭永瑶、金碧辉、尤春秀和李贵刚提供部分材料,感谢苏冠宇撰写手稿,感谢周小、熊一红、谢华涛对稿件的校正,感谢李贵刚的全力指导。本研究得到了国家自然科学基金(82070936、81470606、81570819)、湖北省卫生与计划生育科研项目(No.WJ2017M073)、同济医院转化医学研究十大项目(No.2016ZHYX20)、武汉市医学青年先锋培养项目(No.2015whzqnyxggrc10)、全球人才招聘计划(G2022154028L)、湖北省国家卫健委2022年度项目(WJ2021ZH0005)、湖北省财政部学科建设基金(42000022815T000000102)

Materials

4',6-Diamidino-2-Phenylindole ThermoFisher D1306 5μg/mL
Amphotericin B Sigma V900919 1.25 μg/mL
Anti-CD73 Abcam ab202122 1:50
Bovine Serum Albumin MERCK A1933
CD105 Proteintech 67075-1-Ig 1:200
CD105 Abcam ab114052 1:50
CD90 Proteintech 66766-1-Ig 1:100
CD90 Abcam ab307736 1:50
Cell Incubator Shanghai Lishen K1119K4644 HF90(HT)
Centrifuge system StatSpin  StatSpin CytoFuge 12
Collagenase A Roche 10103578001 2 mg/mL
Confocal microscope Zeiss  LSM700
Culture plate virya 3500356 35 mm
DME/F-12 1:1 (1x)  cytiva SH30023.01 90%
Donkey anti-Mouse IgG (H+L) Secondary Antibody ThermoFisher A16016 1:1000
Donkey anti-rabbit IgG (H+L) Secondary Antibody ThermoFisher 31568 1:1000
FACS Diva sofware BD Biosciences Tree Star
Flow Cytometer BD Biosciences Becton Dickinson LSRII
Fluorescence microscope olympus cx31 
Gentamicin Sigma G1914 50 μg/mL
Hemocytometer MERCK Z359629 Bright-Line
High-capacity cDNA Transcription Kit ThermoFisher 4374966
Inverted phase-contrast microscope  UOP DSZ2000X
ITS (insulin, transferrin, sodium selenite) Sigma I3146 5 μg/mL insulin, 5 μg/mL transferrin, 5 ng/mL sodium selenite
KnockOut SR Serum Replacement for ESCs/iPSCs gibco 10828-028 10%
Matrigel BioCoat 356234
Pan-CK Abcam ab7753 1:1000
Paraformaldehyde NoninBio NBS0135 4.00%
Paraformaldehyde MKBio MM-1505 4%
PDGFRβ Abclonal A1444 1:100
Real-time fluorescence quantitative PCR instrument Applied Biosystems Step One Plus
Recombinant Human FGF-basic Peprotech 100-18B 4 ng/mL
Recominant Human Leukemia Inhibitory Factor(Lif) Peprotech 300-05 10 ng/mL
RNeasy Mini RNA Isolation Kit Qiagen 74104
SCF Bioss bs-0545R 1:100
SCF Abcam ab52603 1:50
Stereomicroscope ZEISS SteREO Discovery. V8
Sterile surgical round blade Careforde 29500 size 10
TaqMan Gene Expression Assay Mix Applied Biosystems 4448489
Triton X-100 MERCK X100 0.20%
Trypan blue ThermoFisher 15250061 0.40%
Trypsin-EDTA Genview GP3108 0.25%
Tween 20 MERCK P9416
Ultra Clean Bench LaiTe LT20200705 SW-CJ-IFDG
Universal PCR Master Mix Applied Biosystems 4304437
Vim  Abcam ab92547 1:100

References

  1. Le, Q., Xu, J., Deng, S. X. The diagnosis of limbal stem cell deficiency. Ocular Surface. 16 (1), 58-69 (2018).
  2. Polisetty, N., Fatima, A., Madhira, S. L., Sangwan, V. S., Vemuganti, G. K. Mesenchymal cells from limbal stroma of human eye. Molecular Vision. 14, 431-442 (2008).
  3. Xie, H. T., Chen, S. Y., Li, G. G., Tseng, S. C. Isolation and expansion of human limbal stromal niche cells. Investigative Ophthalmology & Visual Science. 53 (1), 279-286 (2012).
  4. Li, G. G., Zhu, Y. T., Xie, H. T., Chen, S. Y., Tseng, S. C. Mesenchymal stem cells derived from human limbal niche cells. Investigative Ophthalmology & Visual Science. 53 (9), 5686-5697 (2012).
  5. Li, G. G., Chen, S. Y., Xie, H. T., Zhu, Y. T., Tseng, S. C. Angiogenesis potential of human limbal stromal niche cells. Investigative Ophthalmology & Visual Science. 53 (7), 3357-3367 (2012).
  6. Hu, W., Zhang, Y., Tighe, S., Zhu, Y. T., Li, G. G. A new isolation method of human lacrimal canaliculus epithelial stem cells by maintaining close association with their niche cells. International Journal of Medical Sciences. 15 (12), 1260-1267 (2018).
  7. Kumar, A., Xu, Y., Yang, E., Du, Y. Stemness and regenerative potential of corneal stromal stem cells and their secretome after long-term storage: Implications for ocular regeneration. Investigative Ophthalmology & Visual Science. 59 (8), 3728-3738 (2018).
  8. Xiao, Y. T., Qu, J. Y., Xie, H. T., Zhang, M. C., Zhao, X. Y. A comparison of methods for isolation of limbal niche cells: Maintenance of limbal epithelial stem/progenitor cells. Investigative Ophthalmology & Visual Science. 61 (14), 16 (2020).
  9. Zhu, H., et al. Limbal niche cells and three-dimensional matrigel-induced dedifferentiation of mature corneal epithelial cells. Investigative Ophthalmology & Visual Science. 63 (5), 1 (2022).
  10. Basu, S., et al. Human limbal biopsy-derived stromal stem cells prevent corneal scarring. Science Translational Medicine. 6 (266), 266ra172 (2014).
  11. Acar, U., et al. Effect of allogeneic limbal mesenchymal stem cell therapy in corneal healing: role of administration route. Ophthalmic Research. 53 (2), 82-89 (2015).
  12. Katikireddy, K. R., Dana, R., Jurkunas, U. V. Differentiation potential of limbal fibroblasts and bone marrow mesenchymal stem cells to corneal epithelial cells. Stem Cells. 32 (3), 717-729 (2014).
  13. Polisetti, N., Sharaf, L., Reinhard, T., Schlunck, G. Isolation and ex vivo expansion of limbal mesenchymal stromal cells. Bio-Protocols. 12 (14), e4471 (2022).
  14. Xie, H. T., Chen, S. Y., Li, G. G., Tseng, S. C. Limbal epithelial stem/progenitor cells attract stromal niche cells by SDF-1/CXCR4 signaling to prevent differentiation. Stem Cells. 29 (11), 1874-1885 (2011).
  15. Li, G., et al. Human limbal niche cells are a powerful regenerative source for the prevention of limbal stem cell deficiency in a rabbit model. Scientific Reports. 8, 6566 (2018).
  16. Kumar, A., Yun, H., Funderburgh, M. L., Du, Y. Regenerative therapy for the cornea. Progress In Retinal and Eye Research. 87, 101011 (2022).
  17. Pineda, R. . World Corneal Blindness. Foundations of Corneal Disease. , 299-305 (2020).
  18. Zieske, J. D., Guimarães, S. R., Hutcheon, A. E. Kinetics of keratocyte proliferation in response to epithelial debridement. Experimental Eye Research. 72 (1), 33-39 (2001).
  19. Resnikoff, S., et al. Global data on visual impairment in the year 2002. Bulletin of the World Health Organization. 82 (11), 844-851 (2004).
  20. Tan, Y., et al. Limbal bio-engineered tissue employing 3D nanofiber-aerogel scaffold to facilitate LSCs growth and migration. Macromolecular Bioscience. 22 (5), e2100441 (2022).
  21. Aghamirsalim, M., et al. 3D printed hydrogels for ocular wound healing. Biomedicines. 10 (7), 1562 (2022).
  22. Sasamoto, Y., Ksander, B. R., Frank, M. H., Frank, N. Y. Repairing the corneal epithelium using limbal stem cells or alternative cell-based therapies. Expert Opinion on Biological Therapy. 18 (5), 505-513 (2018).
  23. Rohaina, C. M., et al. Reconstruction of limbal stem cell deficient corneal surface with induced human bone marrow mesenchymal stem cells on amniotic membrane. Translational Research. 163 (3), 200-210 (2014).
  24. O’Callaghan, A. R., Dziasko, M. A., Sheth-Shah, R., Lewis, M. P., Daniels, J. T. J. A. B. Oral mucosa tissue equivalents for the treatment of limbal stem cell deficiency. Advanced Biosystems. 4 (7), e1900265 (2020).
  25. Yu, D., Chen, M., Sun, X., Ge, J. Differentiation of mouse induced pluripotent stem cells into corneal epithelial-like cells. Cell Biology International. 37 (1), 87-94 (2013).
  26. Zeppieri, M., et al. Adipose-derived stem cells for corneal wound healing after laser-induced corneal lesions in mice. Journal of Clinical Medicine. 6 (12), 115 (2017).
  27. Kumar, A., Kumar, V., Rattan, V., Jha, V., Bhattacharyya, S. Secretome cues modulate the neurogenic potential of bone marrow and dental stem cells. Molecular Neurobiology. 54 (6), 4672-4682 (2017).
  28. Hayashi, R., et al. Coordinated generation of multiple ocular-like cell lineages and fabrication of functional corneal epithelial cell sheets from human iPS cells. Nature Protocols. 12 (4), 683-696 (2017).
  29. Guo, P., et al. Limbal niche cells are a potent resource of adult mesenchymal progenitors. Journal of Cellular and Molecular Medicine. 22 (7), 3315-3322 (2018).
  30. Wang, W., et al. Differential gene expression between limbal niche progenitors and bone marrow derived mesenchymal stem cells. International Journal of Medical Sciences. 17 (4), 549-557 (2020).
  31. González, S., Deng, S. X. Presence of native limbal stromal cells increases the expansion efficiency of limbal stem/progenitor cells in culture. Experimental Eye Research. 116, 169-176 (2013).
  32. Funderburgh, M. L., Du, Y., Mann, M. M., SundarRaj, N., Funderburgh, J. L. PAX6 expression identifies progenitor cells for corneal keratocytes. FASEB Journal. 19 (10), 1371-1373 (2005).
  33. Funderburgh, J. L., Funderburgh, M. L., Du, Y. Stem cells in the limbal stroma. Ocular Surface. 14 (2), 113-120 (2016).
  34. Chen, S. Y., Hayashida, Y., Chen, M. Y., Xie, H. T., Tseng, S. C. A new isolation method of human limbal progenitor cells by maintaining close association with their niche cells. Tissue Engineering. Part C, Methods. 17 (5), 537-548 (2011).
  35. Sato, T., Clevers, H. SnapShot: Growing organoids from stem cells. Cell. 161 (7), 1700-1701 (2015).
check_url/fr/65618?article_type=t

Play Video

Citer Cet Article
Su, G., Wang, W., Xu, L., Liu, R., Tan, Y., Jin, B., You, C., Zhou, X., Xiong, Y., Xie, H., Li, G. Isolation and Identification of Limbal Niche Cells. J. Vis. Exp. (200), e65618, doi:10.3791/65618 (2023).

View Video