Summary

用于评估手术辅助快速腭扩张模式的有限元分析模型

Published: October 20, 2023
doi:

Summary

创建了一套新的手术辅助快速腭扩张 (SARPE) 有限元模型,该模型可以在不同角度的颊骨截骨术中执行临床所需的扩张器激活量,以进一步分析所有三个维度的半上颌骨扩张模式。

Abstract

引入手术辅助快速腭扩张 (SARPE) 以释放骨阻力,以促进骨骼成熟患者的骨骼扩张。然而,据报道,在所有 SARPE 患者中,有 7.52% 的患者出现左右两侧不对称扩张,其中 12.90% 的患者必须接受第二次手术进行矫正。导致不对称扩张的病因尚不清楚。有限元分析已被用于评估颌面结构中与SARPE相关的应力。然而,由于LeFort I截骨部位的骨骼碰撞仅在一定程度的扩张后发生,因此大多数现有模型并不能真正代表力分布,因为这些现有模型的扩张量很少超过1 mm。因此,有必要创建一个新的SARPE有限元模型,该模型可以执行临床所需的扩张激活量,以进一步分析所有三个维度的半上颌骨扩张模式。将锥形束计算机断层扫描 (CBCT) 的三维 (3D) 颅骨模型导入 Mimics 并转换为数学实体,以分割上颌复合体、上颌第一前磨牙和上颌第一磨牙。这些结构被转移到Geomagic中,用于表面平滑和松质骨和牙周韧带的创建。然后保留上颌骨的右半部分并镜像,以在 SolidWorks 中创建完美对称的模型。构建了 Haas 扩张器并将其绑扎到上颌第一前磨牙和第一磨牙上。在Ansys中对不同角度、间隙为1 mm的各种颊切骨术组合进行了有限元分析。进行收敛测试,直到达到所需的两侧膨胀量(总共至少 6 毫米)。本研究为评估颊骨切开成角如何影响SARPE的扩张模式奠定了基础。

Introduction

手术辅助快速腭扩张 (SARPE) 是一种常用的技术,用于骨骼成熟患者的上颌骨结构和牙弓横向扩张1.该手术包括 LeFort I 截骨术、腭中皮质切开术,以及翼上颌裂2 的松解术。然而,已有报道称,SARPE 不希望的扩张模式,例如左半上颌骨和右半上颌骨3 之间的不均匀扩张和牙槽突颊侧倾/旋转4,这可能导致 SARPE 失败,有时甚至需要额外的手术进行矫正5。先前的研究表明,上颌周截骨术的变化可能在 SARPE 扩张后模式中起重要作用2,3,因为 Le Fort I 截骨部位的骨块之间的碰撞会导致半上颌骨横向扩张的不均匀阻力和半上颌骨的旋转,切口下方的牙槽边缘向内移动,而牙槽突扩张 34.因此,有必要研究不同截骨方向,尤其是颊骨截骨术对 SARPE 后扩张模式的影响。

已经建立了几个有限元分析(FEA)模型来评估SARPE过程中的力分布。然而,这些模型中的膨胀量限制在最多 1 mm,远低于所需的临床量 6,7,8,9,10,11,12。FEA 模型的扩展不足可能导致对 SARPE 后结果的错误预测。更具体地说,正如 Chamberland 和 Proffit4 所报道的那样,如果扩张器没有充分转动,可能无法证明截骨部位的骨骼之间的碰撞,这可能不能反映真实的临床现实。由于先前模型中内置的扩展量有限,因此这些模型的结果评估集中在应力分析上。然而,牙科中有限元分析的应力分析通常是在静态载荷下进行的,材料的力学性能设置为各向同性和线性弹性,这进一步限制了有限元分析研究的临床相关性13

此外,这些研究中的大多数没有考虑截骨部位678101112 处的手术器械厚度,通常将切口处的摩擦设置为零作为边界条件的一部分。然而,这种设置过度简化了硬组织和软组织之间的接触。它可能会显着影响力的分布和由此产生的半上颌骨扩张模式。

然而,没有可用的文献使用有限元分析 (FEA) 模型研究截骨术对 SARPE 后不对称性的影响。目前所有的研究都采用了对称截骨模式6,7,8,9,10,11,12,14的模型这并不能反映临床实践的现实,即截骨术在颅骨的每一侧可能不同。缺乏研究不对称截骨术对 SARPE 后不对称影响的文献,这是一个必须解决的重大知识差距。

因此,本研究的目的是开发一种新的 SARPE FEA 模型,该模型可以真正模拟临床状况,包括扩张量和截骨间隙,并研究各种截骨设计下半上颌骨在三个维度的扩张模式。这种方法将为 SARPE 后扩增模式背后的机制提供有价值的见解,并作为临床医生规划和执行 SARPE 程序的有用工具。

Protocol

本研究利用了一名患有 SARPE 的患者的预先存在的、去识别化的治疗前 CBCT 图像作为治疗计划的一部分。该研究是根据《赫尔辛基宣言》进行的,并得到了机构审查委员会(协议#853608)的批准。 1. 样本采集和牙齿分割 在自然头部位置获取头部的人类 CBCT 图像,包括患者的上颌骨复合体,包括上颌基底骨、上颌牙槽骨和上颌牙列。 将 CBCT Digital Imaging…

Representative Results

该演示模型利用了一名 47 岁患有上颌骨缺陷的女性的 CBCT 图像。在生成的模型中,保留了鼻腔、上颌窦和扩张锚定牙齿(第一前磨牙和第一磨牙)的牙周韧带空间的解剖结构(图 1)。 为了准确模拟手术过程,在所有模拟中,鼻中隔、鼻腔侧壁和翼上颌裂与上颌体分离。此外,还创建了一个代表手术期间颊口截骨术的平面,厚度为 1 毫米。该平面从梨?…

Discussion

SARPE 中颊骨切开术的方向可以是上颌骨支撑区域向下踩踏之前从鼻孔水平切开,也可以是从梨状边缘向上颌第一磨牙相对应的支撑的斜坡切口,如 Betts2 所述。无论哪种方式,截骨术都延伸到上颌骨的颧突下方。然而,目前大多数关于SARPE的有限元分析研究都使用水平切口,向后延伸,与梨状边缘6,7,12,14相同。</sup…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项研究得到了美国正畸医师协会基金会 (AAOF) 正畸教师发展奖学金奖(针对 CL)、美国正畸医师协会 (AAO) 全职教师奖学金(针对 CL)、宾夕法尼亚大学牙科医学院 Joseph 和 Josephine Rabinowitz 卓越研究奖(针对 CL)、正畸学系的 J. Henry O’Hern Jr. 试点资助, 宾夕法尼亚大学牙科医学院(C.L.)和国际正畸基金会青年研究基金(C.L.)。

Materials

Ansys Ansys Version 2019 Ansys is a software for finite element analysis that can solve complicated models based on differential equations. The expansion results of different buccal osteotomy angles were analyzed through this software.
Geomagic Studio 3D Systems Version 10 Geomagic Studio is a software for reverse engineering that can generate digital models based on physical scanning points. This study built cancellous bone and periodontal ligaments through this software.
Mimics Materialise Version 16 Mimics is a medical 3D image-based engineering software that efficiently converts CT images to a 3D model. This study reconstructed a maxilla complex through the patient's DICOM images.
SolidWorks Dassault Systèmes Version 2018 SolidWorks is a computer-aided design software for designers and engineers to create 3D models. A Haas expander was designed and drawn through this software in this study.

References

  1. Mommaerts, M. Y. Transpalatal distraction as a method of maxillary expansion. British Journal of Oral and Maxillofacial Surgery. 37 (4), 268-272 (1999).
  2. Betts, N. J., Vanarsdall, R. L., Barber, H. D., Higgins-Barber, K., Fonseca, R. J. Diagnosis and treatment of transverse maxillary deficiency. The International Journal of Adult Orthodontics and Orthognathic Surgery. 10 (2), 75-96 (1995).
  3. Lin, J. H., et al. Asymmetric maxillary expansion introduced by surgically assisted rapid palatal expansion: A systematic review. Journal of Oral and Maxillofacial Surgery. 80 (12), 1902-1911 (2022).
  4. Chamberland, S., Proffit, W. R. Short-term and long-term stability of surgically assisted rapid palatal expansion revisited. American Journal of Orthodontics and Dentofacial Orthopedics. 139 (6), 815-822 (2011).
  5. Verlinden, C. R., Gooris, P. G., Becking, A. G. Complications in transpalatal distraction osteogenesis: a retrospective clinical study. Journal of Oral and Maxillofacial Surgery. 69 (3), 899-905 (2011).
  6. de Assis, D. S., et al. Finite element analysis of stress distribution in anchor teeth in surgically assisted rapid palatal expansion. International Journal of Oral and Maxillofacial Surgery. 42 (9), 1093-1099 (2013).
  7. Han, U. A., Kim, Y., Park, J. U. Three-dimensional finite element analysis of stress distribution and displacement of the maxilla following surgically assisted rapid maxillary expansion. Journal of Cranio-Maxillofacial Surgery. 37 (3), 145-154 (2009).
  8. Lee, S. C., et al. Effect of bone-borne rapid maxillary expanders with and without surgical assistance on the craniofacial structures using finite element analysis. American Journal of Orthodontics and Dentofacial Orthopedics. 145 (5), 638-648 (2014).
  9. Möhlhenrich, S. C., et al. Simulation of three surgical techniques combined with two different bone-borne forces for surgically assisted rapid palatal expansion of the maxillofacial complex: a finite element analysis. International Journal of Oral and Maxillofacial Surgery. 46 (10), 1306-1314 (2017).
  10. Nowak, R., Olejnik, A., Gerber, H., Frątczak, R., Zawiślak, E. Comparison of tooth- and bone-borne appliances on the stress distributions and displacement patterns in the facial skeleton in surgically assisted rapid maxillary expansion-A finite element analysis (FEA) study. Materials (Basel). 14 (5), 1152 (2021).
  11. Shi, Y., Zhu, C. N., Xie, Z. Displacement and stress distribution of the maxilla under different surgical conditions in three typical models with bone-borne distraction: a three-dimensional finite element analysis. Journal of Orofacial Orthopedics/Fortschritte der Kieferorthopadie. 81 (6), 385-395 (2020).
  12. Tomazi, F. H. S., et al. The Hyrax appliance with tooth anchorage variations in surgically assisted rapid maxillary expansion: a finite element analysis. Oral and Maxillofacial Surgery. , (2022).
  13. Trivedi, S. Finite element analysis: A boon to dentistry. Journal of Oral Biology and Craniofacial Research. 4 (3), 200-203 (2014).
  14. Sankar, S. G., et al. A comparison of different osteotomy techniques with and without pterygomaxillary disjunction in surgically assisted maxillary expansion utilizing modified hybrid rapid maxillary expansion device with posterior implants: A finite element study. National Journal of Maxillofacial Surgery. 12 (2), 171-180 (2021).
  15. Han, U. A., Kim, Y., Park, J. U. Three-dimensional finite element analysis of stress distribution and displacement of the maxilla following surgically assisted rapid maxillary expansion. Journal of Craniomaxillofacial Surgery. 37 (3), 145-154 (2009).
  16. Esen, A., Soganci, E., Dolanmaz, E., Dolanmaz, D. Evaluation of stress by finite element analysis of the midface and skull base at the time of midpalatal osteotomy in models with or without pterygomaxillary dysjunction. British Journal of Oral & Maxillofacial Surgery. 56 (3), 177-181 (2018).
  17. Huzni, S., Oktianda, F., Fonna, S., Rahiem, F., Angriani, L. The use of frictional and bonded contact models in finite element analysis for internal fixation of tibia fracture. Frattura ed Integrità Strutturale. 61, 130-139 (2022).
  18. Holmes, D. Closing the gap. Nature. 550 (7677), S194-S195 (2017).
  19. Lombardo, L., et al. Evaluation of the stiffness characteristics of rapid palatal expander screws. Progress in Orthodontics. 17 (1), 36 (2016).
  20. Zandi, M., Miresmaeili, A., Heidari, A., Lamei, A. The necessity of pterygomaxillary disjunction in surgically assisted rapid maxillary expansion: A short-term, double-blind, historical controlled clinical trial. Journal of Cranio-Maxillofacial Surgery. 44 (9), 1181-1186 (2016).
  21. Möhlhenrich, S. C., et al. Three-dimensional effects of pterygomaxillary disconnection during surgically assisted rapid palatal expansion: a cadaveric study. Oral Surgery, Oral Medicine, Oral Pathology, and Oral Radiology. 121 (6), 602-608 (2016).
check_url/fr/65700?article_type=t

Play Video

Citer Cet Article
Lin, J., Wu, G., Chiu, C., Wang, S., Chung, C., Li, C. Finite Element Analysis Model for Assessing Expansion Patterns from Surgically Assisted Rapid Palatal Expansion. J. Vis. Exp. (200), e65700, doi:10.3791/65700 (2023).

View Video