Summary

小鼠后肢外植体研究跟腱撞击力学生物学的模型

Published: December 08, 2023
doi:

Summary

我们提出了一个定制的实验平台和组织培养方案,该方案以持续的细胞活力再现了由小鼠后肢外植体中跟腱插入撞击驱动的纤维软骨变化,提供了一个适合探索肌腱撞击的机制生物学的模型。

Abstract

肌腱撞击骨骼会产生多轴机械应变环境,横向压缩应变明显升高,从而引发局部纤维软骨表型,其特征是富含糖胺聚糖 (GAG) 的基质积累和胶原网络的重塑。虽然纤维软骨是健康肌腱撞击区域的正常特征,但过多的 GAG 沉积和胶原网络紊乱是肌腱病的标志性特征。因此,撞击在临床上被认为是肌腱病发生和发展的重要外在因素。然而,肌腱撞击背后的机制生物学研究仍未得到充分研究。先前阐明细胞对肌腱撞击反应的努力已经对细胞施加了单轴压缩,并在 体外切除了肌腱外植体。然而,分离的细胞缺乏对机械反应至关重要的三维细胞外环境,并且 体外 和切除的外植体研究都无法概括 体内肌腱撞击产生的多轴应变环境,这取决于撞击区域的解剖学特征。此外, 腱撞击的体内模型缺乏对机械应变环境的控制。为了克服这些局限性,我们提出了一种适用于研究跟腱撞击机制生物学的新型小鼠后肢外植体模型。该模型将跟腱保持在 原位 以保持局部解剖结构,并再现了在被动应用踝关节背屈期间跟腱插入跟骨上产生的多轴应变环境,同时将细胞保留在其原生环境中。我们描述了该模型不可或缺的组织培养方案,并提供了在 7 天内建立持续外植体活力的数据。代表性结果表明,组织学 GAG 染色增强,继发于撞击的胶原纤维排列减少,表明纤维软骨形成增加。该模型可以很容易地适应研究不同的机械负荷方案,并允许操纵感兴趣的分子途径,以确定介导跟腱表型变化响应撞击的机制。

Introduction

许多肌腱,包括跟腱和肩袖肌腱,由于正常的解剖定位而经历骨撞击1,2,3,4.肌腱撞击产生横向指向纵向纤维轴的压缩应变5,6,7.肌腱撞击区域表现出独特的纤维软骨表型,其中收缩的圆形细胞(纤维软骨细胞)嵌入无组织的胶原网络中,糖胺聚糖 (GAG) 含量显着增加2,3,4,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24.先前的研究表明,肌腱撞击产生的不同机械环境通过驱动大型聚集蛋白聚糖(尤其是聚集聚糖)的沉积来维持这种富含GAG的基质,尽管其潜在机制尚不清楚1,3,12,13,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39.虽然纤维软骨是健康肌腱撞击区域的正常特征,但与纤维软骨形成过度相关的异常蛋白多糖代谢是肌腱病的标志特征,肌腱病是一种常见且使人衰弱的疾病,不成比例地出现在慢性撞击肌腱中1,40,41,42,43,44,45,46,47,48,49.因此,肌腱撞击在临床上被认为是驱动几种最常见的肌腱病的重要外在因素,包括肩袖疾病和插入性跟腱病 (IAT)50,51,52.目前,肌腱病的治疗效率低下。例如,大约 47% 的 IAT 患者在保守治疗失败后需要手术干预,术后结局各不相同53,54,55,56.尽管撞击和肌腱病之间存在明显的关系,但撞击肌腱细胞感知和响应其机械环境的机械生物学机制描述甚少,这模糊了对肌腱病发病机制的理解并导致治疗不充分。

外植体模型是肌腱机械生物学研究的有用工具57,58。作为了解肌腱撞击机制生物学的第一步,一些先前的研究已经探索了对细胞或切除的肌腱外植体应用简单单轴压缩后的细胞反应 27,29,30,31,32,33,34,39。然而,体外细胞缺乏细胞外和细胞周基质,这些基质可促进菌株转移,隔离机械变形释放的重要生长因子和细胞因子,并为在机械转导中发挥作用的粘着斑复合物提供底物57,59。此外,体外和切除的外植体研究都无法概括体内肌腱撞击产生的多轴机械应变环境,这取决于撞击区域的解剖学特征 5,6在跟腱插入受撞击的情况下,这包括周围组织,例如跟骨后滑囊和 Kager 的脂肪垫 60,61,62,63。相反,肌腱撞击的体内模型 25,28,36,37,38,64,65,66 允许对直接施加到肌腱的载荷的大小和频率进行最小的控制,这是研究肌腱机械生物学的体内模型的一个公认的局限性 57,5867,68,69,70.鉴于在体内测量肌腱应变的挑战,这些模型中产生的内部应变环境通常表征不佳。

在这篇手稿中,我们提出了一个定制的实验平台,该平台在整个小鼠后肢外植体中重建了跟骨上的跟腱插入的冲击,当与这种组织培养方案配对时,在外植体培养中保持活力超过 7 天,并允许研究肌腱撞击的生物学后遗症。该平台建立在 3D 打印的聚乳酸 (PLA) 基座上,为夹具和 3D 打印 PLA 减容插件的连接奠定了基础。握把用于将大腿和膝盖夹紧在跟腱肌腱交界处的近端,后肢的尾侧朝上,允许使用超声探头或倒置显微镜从上方对跟腱进行成像(图1A)。减容插入物沿着底座上的轨道滑动,并减少所需的组织培养基体积。缠绕在后爪上的编织线利用基础设计和 3D 打印的 PLA 夹从平台中布线。通过拉动绳子,后爪背屈,跟腱插入物撞击跟骨,导致横向压缩应变升高 5,6图 1A)。该平台包含在丙烯酸浴中,该浴将后肢外植体浸没在组织培养基中。用胶带将绷紧的绳子固定在浴缸的外面,可以保持脚踝背屈,从而对跟腱插入产生静电冲击。3D 打印组件的 CAD 文件以多种格式提供(补充文件 1),允许导入到一系列商业和免费的开源 CAD 软件中进行修改以满足实验需求。如果无法使用 3D 打印机进行制造,则可以将 CAD 文件提供给在线 3D 打印服务,这些服务将以低成本打印和运输零件。

重要的是,肱三头肌-跟腱肌腱复合体横跨膝关节和踝关节 71,72,73。因此,跟腱的拉伸拉伤受膝关节屈曲的影响。膝关节伸展使跟腱处于紧张状态,而膝关节屈曲可降低张力。通过首先伸展膝盖,然后被动地背屈踝关节,撞击插入处的压缩应变可以叠加在拉伸应变上。相反,通过在膝关节屈曲的情况下被动地背屈踝关节,拉伸应变会减少,并且压缩应变仍然存在。目前的协议探讨了三种这样的条件。1) 对于静态撞击,足背弯曲相对于胫骨 < 110° 以撞击插入物,膝盖弯曲以减少张力。2) 对于基线张力组,踝关节伸展至背屈 145° 以上,膝关节伸展,在插入处产生主要拉伸应变。3)对于卸载组,在没有外部施加负荷的情况下,将外植体培养在培养皿中,膝盖和脚踝处于中立位置。上述角度是相对于坐标系进行照相测量的,其中足部和胫骨以 180° 的角度平行,以 90° 的角度垂直。

该方案的关键步骤包括 1) 解剖后肢外植体并小心切除皮肤和足底肌腱;2)地塞米松预处理48小时后的外植体培养;3)组织切片和组织学染色;4)彩色图像分析以评估纤维软骨的形成。解剖后,将每个后肢外植体在补充有地塞米松74的培养基中预处理48小时。将每只小鼠的对侧肢体分配到单独的实验组进行成对比较,这有助于控制生物学变异性。预处理后,将外植体如上所述放置在平台中并再培养7天(图1B)。与预处理组(第 0 天)进行额外的比较,其中在预处理 48 小时后立即去除外植体。

外植体培养后,修剪后肢,将福尔马林固定,脱钙并包埋在石蜡中。矢状面方向的连续切片提供了从肌腱交界处到跟骨插入处的跟腱的可视化,同时允许通过整个肌腱跟踪切片深度。末端脱氧核苷酸转移酶 (TdT) 介导的 dUTP X-nick 标记 (TUNEL) 用于可视化继发于细胞凋亡的 DNA 损伤并评估活力。进行甲苯胺蓝组织学和定制彩色图像分析以量化 GAG 染色的变化。然后将甲苯胺蓝染色的组织切片用于SHG成像,以表征胶原纤维组织的改变(图1B)。

提供的代表性结果表明,富含GAG的基质的组织学染色改变,模型内7天的静态撞击产生的细胞外胶原网络紊乱。该模型可用于探索撞击驱动的纤维软骨变化的分子机制。

Protocol

所有动物工作均由罗切斯特大学动物资源委员会批准。 1.组织培养基的制备 在37°C和5%CO2的培养箱中,在Dulbecco改良的Eagle培养基(1x DMEM)中培养所有外植体,其中含有1%v / v青霉素 – 链霉素和200μM L-抗坏血酸。对于最初的 48 小时预处理,在补充有 100 nM 地塞米松74 的 70 mL 培养基中培养每个外植体。预处理后,在没有地塞米松的情?…

Representative Results

TUNEL染色组织切片的代表性图像显示,在实验组的外植体培养7天后,跟腱体内的凋亡核最小(图2A)。这些图像的定量提供了证据,证明在外植体培养 7 天后,组织培养方案在不同负载条件下的外植体培养 7 天后,在跟腱内平均保持高达 78% 的活力(图 2B)。 定性地,与未加载的对照组相比,在静电冲击 7 天后,增强的甲苯胺蓝染?…

Discussion

实验性小鼠后肢外植体平台与本研究中描述的组织培养方案相结合,为研究跟腱插入处撞击驱动的纤维软骨形成的机制生物学提供了合适的模型。代表性结果证明了该外植体模型的实用性,该结果表明,在静态撞击 7 天后,甲苯胺蓝染色的显着和空间异质性变化同时维持了细胞活力。这些发现表明继发于机械撞击的富含GAG的基质分子的代谢改变,与其他模型和临床研究一致</…

Divulgations

The authors have nothing to disclose.

Acknowledgements

作者感谢罗切斯特大学肌肉骨骼研究中心组织学、生物化学和分子成像 (HBMI) 核心的 Jeff Fox 和 Vidya Venkatramani 提供的支持和帮助,部分资金来自 P30AR06965。此外,作者要感谢罗切斯特大学医学中心的光学显微镜和纳米镜中心(CALMN)在多光子显微镜方面的帮助。这项研究由 R01 AR070765 和 R01 AR070765-04S1 以及 1R35GM147054 和 1R01AR082349 资助。

Materials

Absorbent underpads VWR 82020-845 For benchtop dissection
Acrylic bath Source One X001G46CB1 Contains the explant platform submerged in culture media
Autoclave bin Thermo Scientific 13-361-20 Used as secondary containment, holds two platforms
Base 3D printed from CAD files provided as Supplementary Files
Braided line KastKing 30lb test Used to wrap around paw and apply ankle dorsiflexion
Clip 3D printed from CAD files provided as Supplementary Files
Cover glass Fisherbrand 12-541-034 Rectangular, No. 2, 50 mm x 24 mm
Cytoseal XYL VWR 8312-4 Xylene-based mounting media for coverslipping Toluidine blue stained tissue sections
Dexamethasone MP Biomedical LLC 194561 CAS#50-02-2
Dimethyl sulfoxide (DMSO), anhydrous Invitrogen by ThermoFisher D12345 CAS#67-68-5, use to solubilize dexamethasone into concentrated stock solutions
Double-sided tape Scotch Brand 34-8724-5195-9 To attach sandpaper to Grip platens
Dulbecco's Modified Eagle Medium (1X DMEM) Gibco by ThermoFisher 11965092 high glucose, (-) pyruvate, (+) glutamine
EDTA tetrasodium salt dihydrate Thermo Scientific Chemicals J15700.A1 CAS#10378-23-1, used to make 14% EDTA solution for sample decalcifcation
Ethanol, 200 proof Thermo Scientific T038181000 CAS#64-17-5, 1 L supply
Foam biopsy pads Leica 3801000 Used with processing cassettes, help hold ankle joints in desired position during fixation and decalcification
Forceps, #SS Standard Inox Dumont 11203-23 Straight, smooth, fine tips
Forceps, Micro-Adson 4.75" Fisherbrand 13-820-073 Straight, fine tips with serrated teeth
Garnet Sandpaper, 50-D Grit Norton M600060 01518 Or other coarse grit sandpaper
Glacial acetic acid Fisher Chemical A38S-500 CAS#64-19-7, for adjusting pH of sodium acetate buffer used for Toluidine blue histology, as well as 14% EDTA decalcification solution
Grips ADMET GV-100NT-A4 Stainless steel vice grips, screws and springs described in the protocol are included
Histobond Adhesive Microscope Slides VWR 16005-108 Sagittal sections of hind limbs explants reliably adhere to these slides through all staining protocols
In situ Cell Death Detection Kit, TMR Red Roche 12156792910 TUNEL assay
Labeling tape Fisherbrand 15-959 Or any other labeling tape of preference
L-ascorbic acid Sigma-Aldrich A4544-100G CAS#50-81-7, for culture media formulation
Neutral buffered formalin, 10% Leica 3800600 For sample fixation, 5 gallon supply
Nunc petri dishes Sigma-Aldrich P7741-1CS 100 mm diameter x 25 mm height, maintain explants submerged in 70 mL of culture media as described in protocol
Penicillin-streptomycin (100X) Gibco by ThermoFisher 15140122 Add 5 mL to 500 mL 1X DMEM for 1% v/v (1X) working concentration
Polylactic acid (PLA) 1.75 mm filament Hatchbox Choose filament diameter compatible with your 3D printer extruder, in color of choice.
Processing cassettes Leica 3802631 For fixation, decalcification and paraffin embedding
Prolong Gold Antifade Reagent with DAPI Invitrogen by ThermoFisher P36931 Mounting media for coverslipping tissue sections after TUNEL
Proteinase K Fisher BioReagents BP1700-50 CAS#39450-01-6, used for antigen retrieval in TUNEL protocol
Scissors, Fine FST 14094-11 Straight, sharp
Slide Staining Set, 12-place Mercedes Scientific  MER 1011 Rack with 12 stain dishes and slide dippers for Toluidine blue histology
Sodium acetate, anhydrous Thermo Scientific Chemicals A1318430 CAS#127-09-3, used to make buffer for Toluidine blue histology
Tissue-Tek Accu-Edge Low Profile Microtome Blades VWR 25608-964 For paraffin sectioning
Toluidine Blue O Thermo Scientific Chemicals 348601000 CAS#92-31-9
Volume Reduction Insert 3D printed from CAD files provided as Supplementary Files
Xylenes Leica 3803665 4 gallon supply for histological staining

References

  1. Cook, J. L., Purdam, C. Is compressive load a factor in the development of tendinopathy. Br J Sports Med. 46 (3), 163-168 (2012).
  2. Benjamin, M., Qin, S., Ralphs, J. R. Fibrocartilage associated with human tendons and their pulleys. J Anat. 187 (Pt 3), 625-633 (1995).
  3. Benjamin, M., Ralphs, J. R. Fibrocartilage in tendons and ligaments – an adaptation to compressive load. J Anat. 193 (4), 481-494 (1998).
  4. Benjamin, M., Theobald, P., Suzuki, D., Toumi, H. The anatomy of the Achilles tendon. The Achilles Tendon. 3, 5-16 (2007).
  5. Chimenti, R. L., et al. Insertional achilles tendinopathy associated with altered transverse compressive and axial tensile strain during ankle dorsiflexion. J Orthop Res. 35 (4), 910-915 (2017).
  6. Mora, K. E., et al. Ultrasound strain mapping of the mouse Achilles tendon during passive dorsiflexion. J Biomech. 132, 110920 (2022).
  7. Pringels, L., et al. Intratendinous pressure changes in the Achilles tendon during stretching and eccentric loading: Implications for Achilles tendinopathy. Scand J Med Sci Sports. 33 (5), 619-630 (2023).
  8. Koob, T. J., Vogel, K. G. Site-related variations in glycosaminoglycan content and swelling properties of bovine flexor tendon. J Orthop Res. 5 (3), 414-424 (1987).
  9. Vogel, K. G., Koob, T. J. Structural specialization in tendons under compression. Int Rev Cytol. 115, 267-293 (1989).
  10. Vogel, K. G., Ordög, A., Pogány, G., Oláh, J. Proteoglycans in the compressed region of human tibialis posterior tendon and in ligaments. J Orthop Res. 11 (1), 68-77 (1993).
  11. Vogel, K. G., Sandy, J. D., Pogány, G., Robbins, J. R. Aggrecan in bovine tendon. Matrix Biol. 14 (2), 171-179 (1994).
  12. Robbins, J. R., Vogel, K. G. Regional expression of mRNA for proteoglycans and collagen in tendon. Eur J Cell Biol. 64 (2), 264-270 (1994).
  13. Vogel, K., Gordon, S. I., Blair, S. J., Fine, L. J. . Repetitive motion disorders of the upper extremity. , (1995).
  14. Benjamin, M., Tyers, R. N., Ralphs, J. R. Age-related changes in tendon fibrocartilage. J Anat. 179, 127-136 (1991).
  15. Ralphs, J. R., Benjamin, M., Thornett, A. Cell and matrix biology of the suprapatella in the rat: a structural and immunocytochemical study of fibrocartilage in a tendon subject to compression. Anat Rec. 231 (2), 167-177 (1991).
  16. Rufai, A., Benjamin, M., Ralphs, J. R. Development and ageing of phenotypically distinct fibrocartilages associated with the rat Achilles tendon. Anat Embryol (Berl). 186 (6), 611-618 (1992).
  17. Rufai, A., Ralphs, J. R., Benjamin, M. Ultrastructure of fibrocartilages at the insertion of the rat Achilles tendon. J Anat. 189 (Pt 1), 185-191 (1996).
  18. Waggett, A. D., Ralphs, J. R., Kwan, A. P. L., Woodnutt, D., Benjamin, M. Characterization of collagens and proteoglycans at the insertion of the human achilles tendon. Matrix Biol. 16 (8), 457-470 (1998).
  19. Ralphs, J., et al. Regional differences in cell shape and gap junction expression in rat Achilles tendon: relation to fibrocartilage differentiation. J Anat. 193 (pt 2), 215-222 (1998).
  20. Milz, S., et al. Three-dimensional reconstructions of the Achilles tendon insertion in man. J Anat. 200 (Pt 2), 145-152 (2002).
  21. Tischer, T., Milz, S., Maier, M., Schieker, M., Benjamin, M. An immunohistochemical study of the rabbit suprapatella, a sesamoid fibrocartilage in the quadriceps tendon containing aggrecan. J Histochem Cytochem. 50 (7), 955-960 (2002).
  22. Esquisatto, M. A., Joazeiro, P. P., Pimentel, E. R., Gomes, L. The effect of age on the structure and composition of rat tendon fibrocartilage. Cell Biol Int. 31 (6), 570-577 (2007).
  23. Matuszewski, P. E., et al. Regional variation in human supraspinatus tendon proteoglycans: Decorin, biglycan, and aggrecan. Connect Tissue Res. 53 (5), 343-348 (2012).
  24. Buckley, M. R., Huffman, G. R., Iozzo, R. V., Birk, D. E., Soslowsky, L. J. The location-specific role of proteoglycans in the flexor carpi ulnaris tendon. Connect Tissue Res. 54 (6), 367-373 (2013).
  25. Gillard, G. C., Reilly, H. C., Bell-Booth, P. G., Flint, M. H. The influence of mechanical forces on the glycosaminoglycan content of the rabbit flexor digitorum profundus tendon. Connect Tissue Res. 7 (1), 37-46 (1979).
  26. Giori, N. J., Beaupre, G. S., Carter, D. R. Cellular shape and pressure may mediate mechanical control of tissue composition in tendons. J Orthop Res. 11 (4), 581-591 (1993).
  27. Wren, T. A., Beaupré, G. S., Carter, D. R. Mechanobiology of tendon adaptation to compressive loading through fibrocartilaginous metaplasia. J Rehabil Res Dev. 37 (2), 135-143 (2000).
  28. Malaviya, P., et al. An in vivo model for load-modulated remodeling in the rabbit flexor tendon. J Orthop Res. 18 (1), 116-125 (2000).
  29. Shim, J. W., Elder, S. H. Influence of Cyclic Hydrostatic Pressure on Fibrocartilaginous Metaplasia of Achilles Tendon Fibroblasts. Biomech Model Mechanobiol. 5 (4), 247-252 (2006).
  30. Koob, T. J., Clark, P. E., Hernandez, D. J., Thurmond, F. A., Vogel, K. G. Compression loading in vitro regulates proteoglycan synthesis by tendon fibrocartilage. Arch Biochem Biophys. 298 (1), 303-312 (1992).
  31. Evanko, S. P., Vogel, K. G. Proteoglycan Synthesis in Fetal Tendon Is Differentially Regulated by Cyclic Compression in Vitro. Arch Biochem Biophys. 307 (1), 153-164 (1993).
  32. Vogel, K. G. The effect of compressive loading on proteoglycan turnover in cultured fetal tendon. Connect Tissue Res. 34 (3), 227-237 (1996).
  33. Thornton, G. M., et al. Changes in mechanical loading lead to tendon specific alterations in MMP and TIMP expression: influence of stress deprivation and intermittent cyclic hydrostatic compression on rat supraspinatus and Achilles tendons. Br J Sports Med. 44 (10), 698-703 (2010).
  34. Robbins, J. R., Evanko, S. P., Vogel, K. G. Mechanical Loading and TGF-β Regulate Proteoglycan Synthesis in Tendon. Arch Biochem Biophys. 342 (2), 203-211 (1997).
  35. Docking, S., Samiric, T., Scase, E., Purdam, C., Cook, J. Relationship between compressive loading and ECM changes in tendons. Muscles Ligaments Tendons J. 3 (1), 7-11 (2013).
  36. Wang, X., et al. Aberrant TGF-β activation in bone tendon insertion induces enthesopathy-like disease. J Clin Invest. 128 (2), 846-860 (2018).
  37. Cong, G. T., et al. Evaluating the role of subacromial impingement in rotator cuff tendinopathy: Development and analysis of a novel murine model. J Orthop Res. 36 (10), 2780-2788 (2018).
  38. Liu, Y., et al. Evaluating the role of subacromial impingement in rotator cuff tendinopathy: development and analysis of a novel rat model. J Shoulder Elbow Surg. 31 (9), 1898-1908 (2022).
  39. Majima, T., et al. Compressive compared with tensile loading of medial collateral ligament scar in vitro uniquely influences mRNA levels for aggrecan, collagen type II, and collagenase. J Orthop Res. 18 (4), 524-531 (2000).
  40. Hopkins, C., et al. Critical review on the socio-economic impact of tendinopathy. Asia Pac J Sports Med, Arthrosc, Rehabil Technol. 4, 9-20 (2016).
  41. Scott, A., Ashe, M. C. Common tendinopathies in the upper and lower extremities. Curr Sports Med Rep. 5 (5), 233-241 (2006).
  42. Maffulli, N., Wong, J., Almekinders, L. C. Types and epidemiology of tendinopathy. Clin Sports Med. 22 (4), 675-692 (2003).
  43. Bah, I., et al. Tensile mechanical changes in the Achilles tendon due to Insertional Achilles tendinopathy. J Mech Behav Biomed Mater. 112, 104031 (2020).
  44. Maffulli, N., Reaper, J., Ewen, S. W. B., Waterston, S. W., Barrass, V. Chondral Metaplasia in Calcific Insertional Tendinopathy of the Achilles Tendon. Clin J Sport Med. 16 (4), 329-334 (2006).
  45. Corps, A. N., et al. Increased expression of aggrecan and biglycan mRNA in Achilles tendinopathy. Rheumatology (Oxford). 45 (3), 291-294 (2006).
  46. Scott, A., et al. Increased versican content is associated with tendinosis pathology in the patellar tendon of athletes with jumper’s knee. Scand J Med Sci Sports. 18 (4), 427-435 (2008).
  47. Attia, M., et al. Greater glycosaminoglycan content in human patellar tendon biopsies is associated with more pain and a lower VISA score. Br J Sports Med. 48 (6), 469-475 (2014).
  48. Kujala, U. M., Sarna, S., Kaprio, J. Cumulative Incidence of Achilles Tendon Rupture and Tendinopathy in Male Former Elite Athletes. Clin J Sport Med. 15 (3), 133-135 (2005).
  49. Corps, A. N., et al. Changes in matrix protein biochemistry and the expression of mRNA encoding matrix proteins and metalloproteinases in posterior tibialis tendinopathy. Ann Rheum Dis. 71 (5), 746-752 (2012).
  50. Neer, C. S. Anterior acromioplasty for the chronic impingement syndrome in the shoulder: a preliminary report. J Bone Joint Surg Am. 54 (1), 41-50 (1972).
  51. Bigliani, L. U., Ticker, J. B., Flatow, E. L., Soslowsky, L. J., Mow, V. C. The relationship of acromial architecture to rotator cuff disease. Clin Sports Med. 10 (4), 823-838 (1991).
  52. Chimenti, R. L., Cychosz, C. C., Hall, M. M., Phisitkul, P. Current Concepts Review Update Insertional Achilles Tendinopathy. Foot Ankle Int. 38 (10), 1160-1169 (2017).
  53. Nicholson, C. W., Berlet, G. C., Lee, T. H. Prediction of the Success of Nonoperative Treatment of Insertional Achilles Tendinosis Based on MRI. Foot Ankle Int. 28 (4), 472-477 (2007).
  54. Lohrer, H., David, S., Nauck, T. Surgical treatment for achilles tendinopathy – a systematic review. BMC musculoskelet disord. 17 (1), 207 (2016).
  55. McGarvey, W. C., Palumbo, R. C., Baxter, D. E., Leibman, B. D. Insertional Achilles Tendinosis: Surgical Treatment Through a Central Tendon Splitting Approach. Foot Ankle Int. 23 (1), 19-25 (2002).
  56. Maffulli, N., et al. Surgery for chronic Achilles tendinopathy produces worse results in women. Disabil Rehabil. 30 (20-22), 1714-1720 (1714).
  57. Wunderli, S. L., Blache, U., Snedeker, J. G. Tendon explant models for physiologically relevant in vitro study of tissue biology – a perspective. Connect Tissue Res. 61 (3-4), 262-277 (2020).
  58. Dyment, N. A., et al. A brief history of tendon and ligament bioreactors: Impact and future prospects. J Orthop Res. 38 (11), 2318-2330 (2020).
  59. Screen, H. R. C., Berk, D. E., Kadler, K. E., Ramirez, F., Young, M. F. Tendon Functional Extracellular Matrix. J Orthop Res. 33 (6), 793-799 (2015).
  60. Theobald, P., et al. The functional anatomy of Kager’s fat pad in relation to retrocalcaneal problems and other hindfoot disorders. J Anat. 208 (1), 91-97 (2006).
  61. Ghazzawi, A., Theobald, P., Pugh, N., Byrne, C., Nokes, L. Quantifying the motion of Kager’s fat pad. J Orthop Res. 27 (11), 1457-1460 (2009).
  62. Malagelada, F., et al. Pressure changes in the Kager fat pad at the extremes of ankle motion suggest a potential role in Achilles tendinopathy. Knee Surg Sports Traumatol Arthrosc. 28 (1), 148-154 (2020).
  63. Shaw, H. M., Benjamin, M. Structure-function relationships of entheses in relation to mechanical load and exercise. Scand J Med Sci Sports. 17 (4), 303-315 (2007).
  64. Soslowsky, L. J., et al. Rotator cuff tendinosis in an animal model: role of extrinsic and overuse factors. Ann Biomed Eng. 30 (8), 1057-1063 (2002).
  65. Schneeberger, A. G., Nyffeler, R. W., Gerber, C. Structural changes of the rotator cuff caused by experimental subacromial impingement in the rat. J Shoulder Elbow Surg. 7 (4), 375-380 (1998).
  66. Croen, B. J., et al. Chronic subacromial impingement leads to supraspinatus muscle functional and morphological changes: Evaluation in a murine model. J Orthop Res. 39 (10), 2243-2251 (2021).
  67. Andarawis-Puri, N., Flatow, E. L. Tendon fatigue in response to mechanical loading. J Musculoskelet Neuronal Interact. 11 (2), 106-114 (2011).
  68. Gains, C. C., Giannapoulos, A., Zamboulis, D. E., Lopez-Tremoleda, J., Screen, H. R. C. Development and application of a novel in vivo overload model of the Achilles tendon in rat. J Biomech. 151, 111546 (2023).
  69. Williamson, P. M., et al. A passive ankle dorsiflexion testing system to assess mechanobiological and structural response to cyclic loading in rat Achilles tendon. J Biomech. 156, 111664 (2023).
  70. Pedaprolu, K., Szczesny, S. E. A Novel, Open-Source, Low-Cost Bioreactor for Load-Controlled Cyclic Loading of Tendon Explants. J Biomech Eng. 144 (8), 084505 (2022).
  71. Orishimo, K. F., et al. Effect of Knee Flexion Angle on Achilles Tendon Force and Ankle Joint Plantarflexion Moment During Passive Dorsiflexion. J Foot Ankle Surg. 47 (1), 34-39 (2008).
  72. Liu, C. L., et al. Influence of different knee and ankle ranges of motion on the elasticity of triceps surae muscles, Achilles tendon, and plantar fascia. Sci Rep. 10 (1), 6643 (2020).
  73. Cruz-Montecinos, C., et al. Soleus muscle and Achilles tendon compressive stiffness is related to knee and ankle positioning. J Electromyogr Kinesiol. 66, 102698 (2022).
  74. Connizzo, B. K., Grodzinsky, A. J. Lose-dose administration of dexamethasone is beneficial in preventing secondary tendon damage in a stress-deprived joint injury explant model. J Orthop Res. 38 (1), 139-149 (2020).
  75. Wunderli, S. L., et al. Tendon response to matrix unloading is determined by the patho-physiological niche. Matrix Biol. 89, 11-26 (2020).
  76. Yabusaki, K., et al. A Novel Quantitative Approach for Eliminating Sample-To-Sample Variation Using a Hue Saturation Value Analysis Program. PloS one. 9 (3), e89627 (2014).
  77. Gao, J., Messner, K., Ralphs, J. R., Benjamin, M. An immunohistochemical study of enthesis development in the medial collateral ligament of the rat knee joint. Anat Embryol. 194 (4), 399-406 (1996).
  78. Han, S. K., Wouters, W. A. J., Clark, A., Herzog, W. Mechanically induced calcium signaling in chondrocytes in situ. J Orthop Res. 30 (3), 475-481 (2012).
  79. Han, W., et al. Impact of cellular microenvironment and mechanical perturbation on calcium signalling in meniscus fibrochondrocytes. Eur Cell Mater. 27, 321-331 (2014).
  80. Rossetti, L., et al. The microstructure and micromechanics of the tendon-bone insertion. Nat Mater. 16 (6), 664-670 (2017).
  81. Sartori, J., Köhring, S., Witte, H., Fischer, M. S., Löffler, M. Three-dimensional imaging of the fibrous microstructure of Achilles tendon entheses in Mus musculus. J Anat. 233 (3), 370-380 (2018).
  82. Eliasberg, C. D., et al. Identification of Inflammatory Mediators in Tendinopathy Using a Murine Subacromial Impingement Model. J Orthop Res. 37 (12), 2575-2582 (2019).
  83. Zhang, Y., et al. Expression of alarmins in a murine rotator cuff tendinopathy model. J Orthop Res. 38 (11), 2513-2520 (2020).
  84. Zhang, X., et al. Assessment of Mitochondrial Dysfunction in a Murine Model of Supraspinatus Tendinopathy. J Bone Joint Surg. Am. 103 (2), 174-183 (2021).
  85. Liu, Y., et al. The role of Indian Hedgehog Signaling in tendon response to subacromial impingement: evaluation using a mouse model. Am J Sports Med. 50 (2), 362-370 (2022).
  86. Wang, T., et al. Load-induced regulation of tendon homeostasis by SPARC, a genetic predisposition factor for tendon and ligament injuries. Sci Transl Med. 13 (582), eabe5738 (2021).
  87. Passini, F. S., et al. Shear-stress sensing by PIEZO1 regulates tendon stiffness in rodents and influences jumping performance in humans. Nat Biomed Eng. 5 (12), 1457-1471 (2021).
  88. Jones, D. L., et al. Mechanoepigenetic regulation of extracellular matrix homeostasis via Yap and Taz. Proc Natl Acad Sci U S A. 120 (22), e2211947120 (2023).
  89. Connizzo, B. K., Grodzinsky, A. J. Release of pro-inflammatory cytokines from muscle and bone causes tenocyte death in a novel rotator cuff in vitro explant culture model. Connect Tissue Res. 59 (5), 423-436 (2018).
  90. Rees, S. G., et al. Catabolism of aggrecan, decorin and biglycan in tendon. Biochem J. 350 (Pt 1), 181-188 (2000).
  91. Samiric, T., Ilic, M. Z., Handley, C. J. Large aggregating and small leucine-rich proteoglycans are degraded by different pathways and at different rates in tendon. Eur J Biochem. 271 (17), 3612-3620 (2004).
  92. Rees, S. G., Curtis, C. L., Dent, C. M., Caterson, B. Catabolism of aggrecan proteoglycan aggregate components in short-term explant cultures of tendon. Matrix Biol. 24 (3), 219-231 (2005).
  93. Taye, N., Karoulias, S. Z., Hubmacher, D. The "other" 15-40%: The Role of Non-Collagenous Extracellular Matrix Proteins and Minor Collagens in Tendon. J Orthop Res. 38 (1), 23-35 (2020).
  94. Carvalho, H. F., Felisbino, S. L. The development of the pressure-bearing tendon of the bullfrog, Rana catesbeiana. Anat Embryol. 200 (1), 55-64 (1999).
  95. Carvalho, H. F., Felisbino, S. L., Covizi, D. Z., Della Colleta, H. H., Gomes, L. Structure and proteoglycan composition of specialized regions of the elastic tendon of the chicken wing. Cell Tissue Res. 300 (3), 435-446 (2000).
  96. van Sterkenburg, M. N., Kerkhoffs, G. M., Kleipool, R. P., Niek van Dijk, C. The plantaris tendon and a potential role in mid-portion Achilles tendinopathy: an observational anatomical study. J Anat. 218 (3), 336-341 (2011).
  97. Lee, A. H., Elliott, D. M. Comparative multi-scale hierarchical structure of the tail, plantaris, and Achilles tendons in the rat. J Anat. 234 (2), 252-262 (2019).
  98. Lee, A. H., Elliott, D. M. Multi-Scale Loading and Damage Mechanisms of Plantaris and Rat Tail Tendons. J Orthop Res. 37 (8), 1827-1837 (2019).
  99. Fan, H. M., Shrestha, L., Guo, Y., Tao, H. R., Sun, Y. L. The twisted structure of the rat Achilles tendon. J Anat. 239 (5), 1134-1140 (2021).
  100. Cutlip, R. G., Stauber, W. T., Willison, R. H., McIntosh, T. A., Means, K. H. Dynamometer for rat plantar flexor muscles in vivo. Med Biol Eng Comput. 35 (5), 540-543 (1997).
  101. Rijkelijkhuizen, J. M., Baan, G. C., de Haan, A., de Ruiter, C. J., Huijing, P. A. Extramuscular myofascial force transmission for in situ rat medial gastrocnemius and plantaris muscles in progressive stages of dissection. J Exp Biol. 208 (Pt 1), 129-140 (2005).
  102. Saxena, A., Bareither, D. Magnetic Resonance and Cadaveric Findings of the Incidence of Plantaris Tendon. Foot Ankle Int. 21 (7), 570-572 (2000).
  103. dos Santos, M. A., Bertelli, J. A., Kechele, P. R., Duarte, H. Anatomical study of the plantaris tendon: reliability as a tendo-osseous graft. Surg Radiol Anat. 31 (1), 59-61 (2009).
  104. Sartori, J., Köhring, S., Bruns, S., Moosmann, J., Hammel, J. U. Gaining Insight into the Deformation of Achilles Tendon Entheses in Mice. Adv Eng Mater. 23 (11), 2100085 (2021).
check_url/fr/65801?article_type=t

Play Video

Citer Cet Article
Wise, B. C., Mora, K. E., Lee, W., Buckley, M. R. Murine Hind Limb Explant Model for Studying the Mechanobiology of Achilles Tendon Impingement. J. Vis. Exp. (202), e65801, doi:10.3791/65801 (2023).

View Video