Summary

开发用于检测SARS-CoV-2、甲型/乙型流感和MERS-CoV的多重实时RT-qPCR检测

Published: November 10, 2023
doi:

Summary

我们推出了两种基于探针的内部一步法RT-qPCR试剂盒,用于常见呼吸道病毒。第一种检测是针对 SARS-CoV-2 (N)、甲型流感(H1N1 和 H3N2)和乙型流感。第二种是SARS-Cov-2(N)和MERS(UpE和ORF1a)。这些检测可以在任何专业实验室中成功实施。

Abstract

导致 2019 冠状病毒病 (COVID-19) 的严重急性呼吸系统综合症冠状病毒 2 (SARS-CoV-2) 对公众健康构成严重威胁。在流感季节,SARS-CoV-2和其他呼吸道病毒的传播可能导致全人群难以控制的呼吸道疾病负担。为此,在即将到来的秋冬季节,需要仔细监测呼吸道病毒SARS-CoV-2、甲型流感、乙型流感和中东呼吸综合征(MERS-CoV),特别是在SARS-CoV-2、甲型流感和乙型流感的情况下,它们具有相似的流行病学因素,如易感人群、传播方式和临床综合征。如果没有靶标特异性检测,由于这些病毒的相似性,区分这些病毒的病例可能具有挑战性。因此,一种灵敏且有针对性的多重检测方法可以很容易地区分这些病毒靶标,这对医疗保健从业者很有用。在这项研究中,我们利用内部开发的 R3T 一步法 RT-qPCR 试剂盒开发了一种基于实时逆转录酶 PCR 的检测方法,用于同时检测 SARS-CoV-2、甲型流感、乙型流感和 SARS-CoV-2、MERS-CoV。只需 10 个拷贝的合成 RNA,我们就可以以 100% 的特异性同时成功识别 SARS-CoV-2、甲型流感、乙型流感和 MERS-CoV 靶标。该测定被发现是准确、可靠、简单、灵敏和特异性的。所开发的方法可用作医院、医疗中心和诊断实验室中优化的 SARS-CoV-2、甲型流感、乙型流感和 SARS-CoV-2、MERS-CoV 诊断检测以及研究目的。

Introduction

正在进行的 2019 年冠状病毒病 (COVID-19) 的大流行是由称为严重急性呼吸系统综合症冠状病毒 2 (SARS-CoV-2)1 的新型冠状病毒引起的。由于 SAR-CoV-2 具有很强的传染性和快速传播能力,COVID-19 大流行出现在中国武汉市,并迅速蔓延到世界各地。这最终导致呼吸窘迫体征的开始,甚至死亡2,3,4。COVID-19 已在超过 213 个国家/地区被宣布为大流行,预计确诊病例数量将急剧增加,不同研究发表的论文证明了这一点 3,5.COVID-19主要通过感染者释放到环境中的小呼吸道飞沫传播,然后通过吸入或密切接触受污染的表面暴露给脆弱个体。当这些飞沫接触到眼睛、嘴巴或鼻子的粘膜时,一个人可能会被感染6.世界卫生组织(WHO)公布的统计数据显示,全球新冠肺炎确诊病例已超过7600万例,死亡人数达到惊人的700万例7。因此,联合国将 COVID-19 疾病引起的大流行归类为灾难,因为它对全球数十亿人的生活产生直接影响,并产生深远的经济、环境和社会影响。

包括彻底检测、早期发现、接触者追踪和病例隔离在内的公共卫生举措都已被证明对控制这一大流行至关重要8,9,10,11。冬季将增加其他呼吸道病毒的传播,如甲型和乙型流感,并伴有类似 COVID-19 的症状,因此难以及早识别、追踪和隔离 COVID-19 实例。每年,甲型和乙型流感的爆发始于深秋或一月初,季节性可预测12.SARS-CoV-2 和流感病毒具有许多流行病学特征。此外,在易感人群中也有相似之处,包括儿童、老年人、免疫功能低下以及患有慢性合并症(如哮喘、慢性阻塞性肺病、心肾衰竭或糖尿病)的个体12,13。这些病毒不仅具有易感人群,而且具有接触途径和呼吸道飞沫的传播途径14。预计随着流感季节接近 14,患者可能会感染不止一种呼吸道病毒。为此,需要在隔离有症状的患者之前对 SARS-CoV-2 和流感病毒进行筛查。由于全球缺乏核酸提取和诊断资源,无法对三种病毒(SARS-CoV-2、甲型流感和乙型流感)进行单独检测。为了在一次反应中筛选它们,需要开发一种方法或测试。

中东呼吸综合征(MERS)-CoV是人类冠状病毒(CoV)家族的成员。第一批中东呼吸综合征冠状病毒分离株来自沙特阿拉伯的一名住院患者,该患者于2012年9月因急性呼吸道疾病死亡15。有证据表明,中东呼吸综合征冠状病毒的主要宿主是单峰骆驼。已经证明,来自受感染的单峰骆驼的病毒是人畜共患的,因此可以感染人类16,17。感染这种病毒的人可以通过密切接触将其传播给他人18.截至2018年1月26日,全球已有2143例中东呼吸综合征冠状病毒感染实验室确诊病例,包括750例死亡19。中东呼吸综合征冠状病毒最典型的症状是咳嗽、发烧和呼吸急促。据报告,中东呼吸综合征冠状病毒感染还表现出肺炎、腹泻和胃肠道疾病症状20。目前尚无针对中东呼吸综合征冠状病毒的商业疫苗或特定治疗方法。因此,及时和准确的诊断对于预防中东呼吸综合征冠状病毒大范围暴发和区分中东呼吸综合征冠状病毒与SARS-CoV-2疾病至关重要。

迄今为止,已经提出了许多方法来检测这些病毒,例如多重 RT-PCR2122232425、CRISPR/Cas122627、CRISPR/Cas928 和 CRISPR/Cas329、侧向层免疫测定30、纸质生物分子传感器31、一锅 SHERLOCK 测试32、DNA 适配体33、环介导的等温放大(LAMP)19,34等上述每种方法在灵敏度和特异性方面都有独特的优点和缺点。在这些方法中,基于核酸扩增的检测:多重qRT-PCR是最常见的,被认为是诊断SARS-CoV-2、甲型流感、乙型流感和MERS-CoV的金标准。

在这项研究中,我们设计并评估了各种引物组合和探针,以利用标准扭曲合成病毒 RNA 有效、准确和同时检测 SARS-CoV-2、甲型流感、乙型流感和 SARS-CoV-2、MERS-CoV。世界卫生组织 (WHO) 推荐针对 MERS-CoV 或 SARS-CoV-2 靶基因开发的多重检测方法。这些基因通常编码有助于形成复制/转录复合物 (RTC)35 的蛋白质和复合物,例如用于 MERS-CoV 检测的开放阅读框 1a (ORF1a) 内的区域。此外,结构蛋白由诊断测定中使用的基因编码,例如包膜基因 (upE) 和核衣壳基因 (N) 的上游区域,它们分别用于 MERS-CoV 和 SARS-Cov-2 测定35,36。我们使用内部的 R3T 一步法 RT-qPCR 试剂盒建立了用于检测病毒的 RT-qPCR37。使用标准扭曲合成RNA的10倍连续稀释液测试和评估我们的R3T一步法RT-qPCR试剂盒和引物组的病毒检测、灵敏度、特异性和动态范围。最低实际检测限为每次反应约10个转录本拷贝。因此,内部 R3T 一步法 RT-qPCR 试剂盒和引物/探针组可以成功用于 SARS-CoV-2、甲型流感、乙型流感和 SARS-CoV-2、MERS-CoV 的常规同时诊断。

Protocol

1. Taq聚合酶的表达和纯化 在酶的C末端构建具有可切割的六组氨酸标签的质粒。 按照标准方案38将50ng表达载体转化为大肠杆菌BL21-(DE3)菌株。 将转化的细胞接种在四个6L烧瓶中,每个烧瓶在37°C下装有2L2YT培养基肉汤,以170rpm振荡,直到OD 600为0.8或细胞数6.4×108 。 用0.5mM异丙基-β-d-硫代吡喃半乳糖苷(IPTG)诱导Taq聚合酶?…

Representative Results

近年来,使用PCR方法检测常见呼吸道病毒的诊断方法取得了重大进展21,22,23,24,25。然而,尽管取得了这些进步,但允许在一次测试中检测多种病毒的多重方法尚未得到广泛实施,特别是在RT-qPCR平台中。该方法已使用合成RNA病毒和反应组分的内部优化成功实现37</s…

Discussion

由于SARS-CoV-2、甲型/乙型流感和中东呼吸综合征冠状病毒变异株等常见呼吸道病毒的传播,感染率和死亡率高,给全球医疗系统带来了沉重的经济负担12,19,20。出于减轻这种负担的责任感,我们意识到需要一种快速、精确和可及的诊断检测方法,例如 RT-qPCR,以在一次测试中区分这些常见病毒。由于qRT-PCR的多重特性,诊断和区?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项工作得到了阿卜杜拉国王科技大学(King Abdullah University of Science and Technology)通过核心资金和S.M.H.的国家学期大挑战(NTGC)的支持。

Materials

0.45 μm filter cups Thermo Scientific 291-4545
10X Tris-Glycine SDS running buffer Novex LC2675
6-well tissue culturing plates Corning 353046
Ammonium sulfate Fisher Scientific A701-3
Ampicillin Corning 61-238-RH
Cation exchange (HiTrap SP HP) 5 mL Cytiva 17-1152-01
D-(+)-Biotin, 98+% Thermo Scientific A14207.60
DH10Bac competent cells Fisher Scientific 10361012
Dialysis bag (Snakeskin 10,000 MWC) Thermo Scientific 68100
Dithiothreitol (DTT) Thermo Scientific R0862
Dnase/Rnase Free Distilled Water Ambion AM9930
dNTPs Thermo Scientific R0192
E. coli BL21(DE3) competent cells Invitrogen C600003
EDTA Fisher Scientific BP120-1
Elution Buffer Qiagen 19086
ESF 921 insect cell culture medium (Insect cells media) Expression Systems 96-001-01
FBS Solution Gibco A38400-01
Fugene (transfection reagent) Promega E2311
Gentamicin Fisher Scientific 15750060
Glycerol Sigma Aldrich G5516-500
IGEPAL CA-630 Sigma Aldrich I8896-100ml
Imidazole Sigma Aldrich 56750-1Kg
Influenza A (H1N1) synthetic RNA Twist Bioscience 103001
Influenza A (H3N2)  synthetic RNA Twist Bioscience 103002
Influenza B synthetic RNA Twist Bioscience 103003
IPTG Gold Biotechnology I3481C100
Kanamycin Gibco 11815-032
LB Agar Fisher Scientific BP1425-500
LB Broth media Fisher Scientific BP1426-500
Lysozyme Sigma Aldrich L6876-10G
Magnesium Chloride Sigma Aldrich 13152-1Kg
MERS-CoV synthetic RNA Twist Bioscience 103015
MicroAmp Fast Optical 96-well Reaction plates with Barcode (0.1 mL) Applied Biosystems 10310855
Mini- PROTEAN TGX Precast Gel Bio-Rad 456-1093
Miniprep kit Qiagen 27106
Ni-NTA Excel (HisTrap Excel) 5 mL Cytiva 17-3712-06
Ni-NTA HP (HisTrap HP) 5 mL Cytiva 17-5248-02
Optical Adhesice Covers (PCR Compatible,DNA/Rnase/PCR Inhibitors Free Applied Biosystems 4311971
Potassium Chloride Fisher Bioreagents BP366-1
Primers and Probes Integrated DNA Technologies, Inc.
Protease Inhibitor Mini tablets EDTA-Free Thermo Scientific A32955
Protein marker Fermentas 26616
RT-qPCR machine (QuantStudio 7 Flex) Applied Biosystems
S.O.C medium Fisher Scientific 15544034
SARS-CoV-+A2:C442 synthetic RNA Twist Bioscience 102024
Sf9 insect cells Gibco A35243
Sodium Chloride Sigma Aldrich S3014-1Kg
StrepTrap XT 5 mL Cytiva 29401323
Tetracycline IBI Scientific IB02200
Tris Base Molecular Biology Grade Promega H5135
Tris-HCl Affymetrix 22676
Tween 20 Sigma Aldrich P1379-100ml
X-Gal Invitrogen B1690

References

  1. Hu, B., Guo, H., Zhou, P., Shi, Z. L. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 19 (3), 141-154 (2021).
  2. Zhu, N., et al. A novel Coronavirus from patients with Pneumonia in China, 2019. N Engl J Med. 382 (8), 727-733 (2019).
  3. Huang, C., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 395 (10223), 497-506 (2020).
  4. Wu, F., et al. A new coronavirus associated with human respiratory disease in China. Nature. 579 (7798), 265-269 (2020).
  5. Yang, S., et al. Deep learning for detecting corona virus disease 2019 (COVID-19) on high-resolution computed tomography: a pilot study. Ann Transl Med. 8 (7), 450 (2020).
  6. El Hassan, M., et al. A review on the transmission of COVID-19 based on cough/sneeze/breath flows. Eur Phys J Plus. 137 (1), 1 (2022).
  7. . WHO Coronavirus (COVID-19) Dashboard Available from: https://covid19.who.int (2023)
  8. Kucharski, A. J., et al. Effectiveness of isolation, testing, contact tracing, and physical distancing on reducing transmission of SARS-CoV-2 in different settings: a mathematical modelling study. Lancet Infect Dis. 20 (10), 1151-1160 (2020).
  9. Reddy, K. P., et al. Cost-effectiveness of public health strategies for COVID-19 epidemic control in South Africa: a microsimulation modelling study. Lancet Glob Health. 9 (2), e120-e129 (2021).
  10. Cheng, H. Y., et al. Contact tracing assessment of COVID-19 transmission dynamics in Taiwan and risk at different exposure periods before and after symptom onset. JAMA Intern Med. 180 (9), 1156-1163 (2020).
  11. Kretzschmar, M. E., et al. Impact of delays on effectiveness of contact tracing strategies for COVID-19: a modelling study. Lancet Public Health. 5 (8), e452-e459 (2020).
  12. Krammer, F., et al. Influenza. Nat Rev Dis Primers. 4 (1), 3 (2018).
  13. Yang, J., et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis. 94, 91-95 (2020).
  14. Lansbury, L., Lim, B., Baskaran, V., Lim, W. S. Co-infections in people with COVID-19: a systematic review and meta-analysis. J Infect. 81 (2), 266-275 (2020).
  15. Zaki, A. M., van Boheemen, S., Bestebroer, T. M., Osterhaus, A. D., Fouchier, R. A. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 367 (19), 1814-1820 (2012).
  16. Azhar, E. I., et al. Evidence for camel-to-human transmission of MERS coronavirus. N Engl J Med. 370 (26), 2499-2505 (2014).
  17. Ling, Y., Qu, R., Luo, Y. Clinical analysis of the first patient with imported Middle East respiratory syndrome in China. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 27 (8), 630-634 (2015).
  18. Nazer, R. I. Outbreak of Middle East Respiratory Syndrome-Coronavirus causes high fatality after cardiac operations. Ann Thorac Surg. 104 (2), e127-e129 (2017).
  19. Huang, P., et al. A rapid and specific assay for the detection of MERS-CoV. Front Microbiol. 9, 1101 (2018).
  20. Ezhilan, M., Suresh, I., Nesakumar, N. SARS-CoV, MERS-CoV and SARS-CoV-2: A diagnostic challenge. Measurement (Lond). 168, 108335 (2021).
  21. Ulloa, S., et al. A simple method for SARS-CoV-2 detection by rRT-PCR without the use of a commercial RNA extraction kit. J Virol Methods. 285, 113960 (2020).
  22. Kudo, E., et al. Detection of SARS-CoV-2 RNA by multiplex RT-qPCR. PLoS Biol. 18 (10), e3000867 (2020).
  23. Norz, D., Hoffmann, A., Aepfelbacher, M., Pfefferle, S., Lutgehetmann, M. Clinical evaluation of a fully automated, laboratory-developed multiplex RT-PCR assay integrating dual-target SARS-CoV-2 and influenza A/B detection on a high-throughput platform. J Med Microbiol. 70 (2), 001295 (2021).
  24. Yun, J., et al. Evaluation of three multiplex real-time reverse transcription PCR assays for simultaneous detection of SARS-CoV-2, Influenza A/B, and Respiratory Syncytial virus in nasopharyngeal swabs. J Korean Med Sci. 36 (48), e328 (2021).
  25. Lu, X., et al. Real-time reverse transcription-PCR assay panel for Middle East respiratory syndrome coronavirus. J Clin Microbiol. 52 (1), 67-75 (2014).
  26. Broughton, J. P., et al. CRISPR-Cas12-based detection of SARS-CoV-2. Nat Biotechnol. 38 (7), 870-874 (2020).
  27. Ali, Z., et al. iSCAN: An RT-LAMP-coupled CRISPR-Cas12 module for rapid, sensitive detection of SARS-CoV-2. Virus Res. 288, 198129 (2020).
  28. Ali, Z., et al. Bio-SCAN: A CRISPR/dCas9-based lateral flow assay for rapid, specific, and sensitive detection of SARS-CoV-2. ACS Synth Biol. 11 (1), 406-419 (2022).
  29. Yoshimi, K., et al. CRISPR-Cas3-based diagnostics for SARS-CoV-2 and Influenza virus. iScience. 25 (2), 103830 (2022).
  30. Chen, Z., et al. Rapid and sensitive detection of anti-SARS-CoV-2 IgG, using Lanthanide-doped nanoparticles-based lateral flow immunoassay. Anal Chem. 92 (10), 7226-7231 (2020).
  31. Kasetsirikul, S., et al. Detection of the SARS-CoV-2 humanized antibody with paper-based ELISA. Analyst. 145 (23), 7680-7686 (2020).
  32. Joung, J., et al. Detection of SARS-CoV-2 with SHERLOCK One-Pot testing. N Engl J Med. 383 (15), 1492-1494 (2020).
  33. Chen, Z., Wu, Q., Chen, J., Ni, X., Dai, J. A DNA aptamer based method for detection of SARS-CoV-2 nucleocapsid protein. Virol Sin. 35 (3), 351-354 (2020).
  34. Jang, W. S., et al. Development of a multiplex Loop-Mediated Isothermal Amplification (LAMP) assay for on-site diagnosis of SARS CoV-2. PLoS One. 16 (3), e0248042 (2021).
  35. McBride, R., Fielding, B. C. The role of Severe Acute Respiratory Syndrome (SARS)-Coronavirus accessory proteins in virus pathogenesis. Viruses-Basel. 4 (11), 2902-2923 (2012).
  36. AlBalwi, M. A., et al. Evolving sequence mutations in the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). J Infection Public Health. 13 (10), 1544-1550 (2020).
  37. Takahashi, M., et al. Quick and easy assembly of a One-Step qRT-PCR Kit for COVID-19 diagnostics using In-House enzymes. ACS Omega. 6 (11), 7374-7386 (2021).
  38. Sambrook, J., Fritsch, E. R., Maniatis, T. . Molecular cloning: A laboratory manual (2nd ed.). , (1989).
  39. Simpson, R. J. SDS-PAGE of Proteins. CSH Protoc. 2006 (1), (2006).
  40. Simpson, R. J. Staining proteins in gels with Coomassie blue. CSH Protoc. 2007, (2007).
  41. Takumi Yano, J. M. L., et al. Expression of the thermostable Moloney murine leukemia virus reverse transcriptase by silkworm-baculovirus expression system. J Asia-Pac Entomol. 22 (2), 453-457 (2019).
  42. van Kasteren, P. B., et al. Comparison of seven commercial RT-PCR diagnostic kits for COVID-19. J Clin Virol. 128, 104412 (2020).
  43. Shu, B., et al. Multiplex Real-Time reverse transcription PCR for Influenza A virus, Influenza B virus, and Severe Acute Respiratory Syndrome Coronavirus 2. Emerg Infect Dis. 27 (7), 1821-1830 (2021).
  44. Engelke, D. R., Krikos, A., Bruck, M. E., Ginsburg, D. Purification of Thermus aquaticus DNA polymerase expressed in Escherichia coli. Anal Biochem. 191 (2), 396-400 (1990).
  45. Pabbaraju, K., Wong, A. A., Ma, R., Zelyas, N., Tipples, G. A. Development and validation of a multiplex reverse transcriptase-PCR assay for simultaneous testing of Influenza A, Influenza B and SARS-CoV-2. J Virol Methods. 293, 114151 (2020).
  46. Hirotsu, Y., et al. Analysis of COVID-19 and non-COVID-19 viruses, including Influenza viruses, to determine the influence of intensive preventive measures in Japan. J Clin Virol. 132, 104634 (2020).
  47. Sellner, L. N., Coelen, R. J., Mackenzie, J. S. Reverse-Transcriptase inhibits Taq Polymerase-Activity. Nucleic Acids Res. 20 (7), 1487-1490 (1992).
check_url/fr/65822?article_type=t

Play Video

Citer Cet Article
Althobaiti, A., Hamdan, K., Sobhy, M. A., Rawas, R., Takahashi, M., Artyukh, O., Tehseen, M. Development of Multiplex Real-Time RT-qPCR Assays for the Detection of SARS-CoV-2, Influenza A/B, and MERS-CoV. J. Vis. Exp. (201), e65822, doi:10.3791/65822 (2023).

View Video