Summary

细胞外囊泡组织因子活性测定

Published: December 29, 2023
doi:

Summary

在这里,我们描述了一种内部细胞外囊泡组织因子活性测定。基于活性的测定和基于抗原的测定已被用于测量人血浆样品中细胞外囊泡中的组织因子。与基于抗原的检测相比,基于活性的检测具有更高的灵敏度和特异性。

Abstract

组织因子 (TF) 是因子 (F) VII 和 FVIIa 的跨膜受体。TF/FVIIa 复合物通过激活 FIX 和 FX 启动凝血级联反应。TF 以细胞外囊泡 (EV) 的形式从细胞释放到循环中。TF 阳性 (+) EV 水平在各种疾病中升高,包括癌症、细菌和病毒感染以及肝硬化,并且与血栓形成、弥散性血管内凝血、疾病严重程度和死亡率有关。有两种方法可以测量血浆中的 TF+ EV:基于抗原和活性的测定。数据表明,基于活性的检测比基于抗原的检测具有更高的灵敏度和特异性。本文介绍了我们基于两阶段 FXa 生成测定的内部 EVTF 活性测定。将FVIIa,FX和钙添加到含TF + EV的样品中,以在存在和不存在抗TF抗体的情况下产生FXa,以区分TF依赖性FXa世代和TF非依赖性FXa世代。使用 FXa 切割的显色底物来测定 FXa 水平,而使用可靠的重组 TF 生成的标准曲线用于测定 TF 浓度。这种内部 EVTF 活性测定比商业 TF 活性测定具有更高的灵敏度和特异性。

Introduction

凝血是通过因子 (F) VII/VIIa 与组织因子 (TF)1 的结合开始的。TF/FVIIa 复合物可激活 FIX 和 FX 以激活凝血1。全长膜结合TF有两种形式:加密和主动。此外,还有一种可变剪接形式的TF(asTF)。细胞膜外叶中的鞘磷脂和磷脂酰胆碱将 TF 维持在加密状态 2,3,4。当细胞被激活或损伤时,磷脂混血酶将磷脂酰丝氨酸和其他带负电荷的磷脂转移到外叶1。细胞的活化还导致酸性鞘磷脂酶易位到外叶,在那里它将鞘磷脂降解为神经酰胺5。这两种机制将加密的 TF 转换为活动形式。也有人提出,蛋白质二硫键异构酶介导加密TF中Cys186和Cys209之间的二硫键形成,从而导致TF 6,7,8的解密。asTF也存在于循环中,但缺乏跨膜结构域,因此可溶性9,10。重要的是,与全长活性TF10,11相比,asTF具有非常低的促凝血活性水平。

细胞外囊泡 (EV) 从静息、活化和垂死的宿主细胞以及癌细胞中释放12。EV 表达来自其亲本细胞的蛋白质12。活性 TF 携带 EV 从活化的单核细胞、内皮细胞和肿瘤细胞释放到循环中 13,14,15。血浆中TF的水平可以通过基于活性和抗原的测定来测量。基于抗原的检测包括 ELISA 和流式细胞术16。有两种不同的基于活性的测定:一期和两阶段 TF 活性测定。一阶段测定基于基于血浆的凝血测定。将含TF的样品加入血浆中,并在再钙化后测量形成凝块的时间。两阶段测定通过添加 FVII 或 FVIIa、FX 和钙来测量样品的 FXa 生成。FXa水平使用被FXa切割的底物确定。

在一阶段和两阶段TF活性测定中,TF浓度均使用重组TF生成的标准曲线测定。两阶段检测比一阶段检测具有更高的灵敏度和特异性。许多研究已经证实,基于活性的检测比基于抗原的检测具有更高的灵敏度和特异性17,18,19,20,21。此外,我们的内部活性检测比商业活性检测具有更高的灵敏度和特异性22.健康个体在血浆中的EVTF活性水平非常低或检测不到。相比之下,患有癌症、肝硬化、脓毒症和病毒感染等病理疾病的个体具有可检测到的 EVTF 活性水平,这与血栓形成、弥散性血管内凝血、疾病严重程度和死亡率相关 23,24,25,26,27,28。在这里,我们将介绍这种内部两阶段 EVTF 活性测定。

Protocol

该研究得到了北卡罗来纳大学教堂山分校机构审查委员会的批准(协议编号:14-2108)。 1. 从献血者那里采集血液 使用 21 G 针头将干净的静脉穿刺收集到肘前静脉中。丢弃前 3 mL 血液,因为这部分血液可能含有来自血管周围细胞的 TF。 将 2.7 或 1.8 mL(取决于试管的大小)血液抽入含有 3.2% 柠檬酸钠 (0.109 mol/L) 的真空吸液器中。不要过度填充或不…

Representative Results

成功的结果给出的阳性对照值为 ≥0.5 pg/mL,阴性对照值为 1.0 pg/mL 的高 LPS 反应者。代表性结果显示了从 11 名健康供体的全血血浆中分离出的 EV 的 EVTF 活性,有和没有 LPS 激活(图 4)。11 个供体中有 6 个(捐献者 2、4、5、8、10、11)是中高 LPS 反应者,而 11 个捐献者中有 5 个(捐献者 1、3、6、7、9)是低 LPS 反应者。 <p clas…

Discussion

在这里,介绍了我们内部EVTF活性测定的方案。该协议有三个关键步骤。复溶 EV 沉淀时,即使在 EV 沉淀不可见的位置,也要在 EV 沉淀的位置上下移液。EV 沉淀的不完全复溶将导致样品的 EVTF 活性值出现假阴性或低估。其次,在方案步骤6.5中使用HBSA-Ca(+)至关重要,因为没有钙就无法产生FXa生成。第三,使用EDTA-四钠而不是EDTA-二钠来阻止FXa的产生至关重要,因为后者会抑制FXa裂解显色底物的能力…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项工作得到了美国国立卫生研究院NHLBI R35HL155657(N.M.)和John C. Parker教授(N.M.)的支持。我们要感谢塞拉·阿奇博尔德女士的有益评论

Materials

1.5 mL tube for 20,000 x g centrifuge any company N/A We use the one from Fisher Scientific (Catalog number: 05-408-129).
1.5 mL tube for ultracentrifuge any company N/A We use the one from Beckman Coulter (Catalog number: 357448)
15 mL tube any company N/A We use the one from VWR (Catalog number: 89039-666)
21 G x .75 in. BD Vacutainer Safety-Lok Blood Collection Set with 12 in. tubing and luer adapter BD 367281
96-well plate any company N/A We use the one from Globe Scientific (Catalog number: 120338).
BD Vacutainer Citrate Tubes BD 363083
Bovine serum albumin Sigma Aldrich A9418
Calcium chloride Fisher Scientific C69-500
Centrifuge for 1.5 mL tube any company N/A We use the Centrifuge 5417R (Eppendorf).
Centrifuge for 15 mL tube any company N/A We use the Centrifuge 5810R (Eppendorf).
D-(+)-Glucose Sigma Aldrich G7021
Ethylenediaminetetraacetic acid tetrasodium salt dihydrate Sigma Aldrich E6511
Hepes Sigma Aldrich H4034
Human FVIIa Enzyme Research Laboratory HFVIIa The solution should be diluted with HBSA-Ca(+).
Human FX Enzyme Research Laboratory HFX1010 The solution should be diluted with HBSA-Ca(+).
Inhibitory mouse anti-human tissue factor IgG, clone HTF-1 Fisher Scientific 550252
Lipopolysaccharide from Escherichia coli O111:B4 Sigma Aldrich L2630 There are several lipopolysaccharide from different E. coli. Different lipopolysaccharide have different potential to activate monocytes.
Mouse IgG Sigma Aldrich I5381
Pefachrome FXa 8595 Enzyme Research Laboratory 085-27
Plate reader any company N/A We use the SpectraMax i3x from Molecular Devices
Re-lipidated recombinant tissue factor, Dade Innovin Siemens 10873566
Sodium chloride  Fisher Scientific S271-500
Ultracentrifuge Beckman Coulter Optima TLX
Ultracentrifuge rotor Beckman Coulter TLA-55

References

  1. Grover, S. P., Mackman, N. Tissue factor: an essential mediator of hemostasis and trigger of thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology. 38 (4), 709-725 (2018).
  2. Shaw, A. W., Pureza, V. S., Sligar, S. G., Morrissey, J. H. The local phospholipid environment modulates the activation of blood clotting. Journal of Biological Chemistry. 282 (9), 6556-6563 (2007).
  3. Tavoosi, N., et al. Molecular determinants of phospholipid synergy in blood clotting. Journal of Biological Chemistry. 286 (26), 23247-23253 (2011).
  4. Wang, J., Pendurthi, U. R., Rao, L. V. M. Sphingomyelin encrypts tissue factor: ATP-induced activation of A-SMase leads to tissue factor decryption and microvesicle shedding. Blood Advances. 1 (13), 849-862 (2017).
  5. Kornhuber, J., Rhein, C., Muller, C. P., Muhle, C. Secretory sphingomyelinase in health and disease. Biological Chemistry. 396 (6-7), 707-736 (2015).
  6. Versteeg, H. H., Ruf, W. Tissue factor coagulant function is enhanced by protein-disulfide isomerase independent of oxidoreductase activity. Journal of Biological Chemistry. 282 (35), 25416-25424 (2007).
  7. Reinhardt, C., et al. Protein disulfide isomerase acts as an injury response signal that enhances fibrin generation via tissue factor activation. Journal of Clinical Investigation. 118 (3), 1110-1122 (2008).
  8. Langer, F., et al. Rapid activation of monocyte tissue factor by antithymocyte globulin is dependent on complement and protein disulfide isomerase. Blood. 121 (12), 2324-2335 (2013).
  9. Bogdanov, V. Y., et al. Alternatively spliced human tissue factor: a circulating, soluble, thrombogenic protein. Nature Medicine. 9 (4), 458-462 (2003).
  10. Mackman, N. Alternatively spliced tissue factor – one cut too many. Thrombosis and Haemostasis. 97 (1), 5-8 (2007).
  11. Censarek, P., Bobbe, A., Grandoch, M., Schror, K., Weber, A. A. Alternatively spliced human tissue factor (asHTF) is not pro-coagulant. Thrombosis and Haemostasis. 97 (1), 11-14 (2007).
  12. Gyorgy, B., et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cellular and Molecular Life Sciences. 68 (16), 2667-2688 (2011).
  13. Osterud, B., Bjorklid, E. Tissue factor in blood cells and endothelial cells. Frontiers in Bioscience (Elite Edition). 4 (1), 289-299 (2012).
  14. Hisada, Y., Mackman, N. Cancer cell-derived tissue factor-positive extracellular vesicles: biomarkers of thrombosis and survival. Current Opinion in Hematology. 26 (5), 349-356 (2019).
  15. Vatsyayan, R., Kothari, H., Pendurthi, U. R., Rao, L. V. 4-Hydroxy-2-nonenal enhances tissue factor activity in human monocytic cells via p38 mitogen-activated protein kinase activation-dependent phosphatidylserine exposure. Arteriosclerosis, Thrombosis, and Vascular Biology. 33 (7), 1601-1611 (2013).
  16. Mackman, N., Sachetto, A. T. A., Hisada, Y. Measurement of tissue factor-positive extracellular vesicles in plasma: strengths and weaknesses of current methods. Current Opinion in Hematology. 29 (5), 266-274 (2022).
  17. Lee, R. D., et al. Pre-analytical and analytical variables affecting the measurement of plasma-derived microparticle tissue factor activity. Thrombosis Research. 129 (1), 80-85 (2012).
  18. Claussen, C., et al. Microvesicle-associated tissue factor procoagulant activity for the preoperative diagnosis of ovarian cancer. Thrombosis Research. 141, 39-48 (2016).
  19. Mackman, N., Hisada, Y., Archibald, S. J., et al. Tissue factor and its procoagulant activity on cancer-associated thromboembolism in pancreatic cancer: Comment by Mackman et al. Cancer Science. 113 (5), 1885-1887 (2022).
  20. Sachetto, A. T. A., et al. Evaluation of four commercial ELISAs to measure tissue factor in human plasma. Research and Practice in Thrombosis and Haemostasis. 7 (3), 100133 (2023).
  21. Archibald, S. J., Hisada, Y., Bae-Jump, V. L., Mackman, N. Evaluation of a new bead-based assay to measure levels of human tissue factor antigen in extracellular vesicles in plasma. Research and Practice in Thrombosis and Haemostasis. 6 (2), e12677 (2022).
  22. Tatsumi, K., et al. Evaluation of a new commercial assay to measure microparticle tissue factor activity in plasma: communication from the SSC of the ISTH. Journal of Thrombosis and Haemostasis. 12 (11), 1932-1934 (2014).
  23. Hisada, Y., et al. Measurement of microparticle tissue factor activity in clinical samples: A summary of two tissue factor-dependent FXa generation assays. Thrombosis Research. 139, 90-97 (2016).
  24. Tatsumi, K., Hisada, Y., Connolly, A. F., Buranda, T., Mackman, N. Patients with severe orthohantavirus cardiopulmonary syndrome due to Sin Nombre Virus infection have increased circulating extracellular vesicle tissue factor and an activated coagulation system. Thrombosis Research. 179, 31-33 (2019).
  25. Schmedes, C. M., et al. Circulating Extracellular Vesicle Tissue Factor Activity During Orthohantavirus Infection Is Associated With Intravascular Coagulation. Journal of Infectious Diseases. 222 (8), 1392-1399 (2020).
  26. Rosell, A., et al. Patients with COVID-19 have elevated levels of circulating extracellular vesicle tissue factor activity that is associated with severity and mortality-Brief report. Arteriosclerosis, Thrombosis, and Vascular Biology. 41 (2), 878-882 (2021).
  27. Campbell, R. A., et al. Comparison of the coagulopathies associated with COVID-19 and sepsis. Research and Practice in Thrombosis and Haemostasis. 5 (4), e12525 (2021).
  28. Guervilly, C., et al. Dissemination of extreme levels of extracellular vesicles: tissue factor activity in patients with severe COVID-19. Blood Advances. 5 (3), 628-634 (2021).
  29. Hisada, Y., Mackman, N. Measurement of tissue factor activity in extracellular vesicles from human plasma samples. Research and Practice in Thrombosis and Haemostasis. 3 (1), 44-48 (2019).
  30. Sachetto, A. T. A., et al. Tissue factor activity of small and large extracellular vesicles in different diseases. Research and Practice in Thrombosis and Haemostasis. 7 (3), 100124 (2023).
  31. Bom, V. J., Bertina, R. M. The contributions of Ca2+, phospholipids and tissue-factor apoprotein to the activation of human blood-coagulation factor X by activated factor VII. Biochemical Journal. 265 (2), 327-336 (1990).
  32. Tilley, R. E., Holscher, T., Belani, R., Nieva, J., Mackman, N. Tissue factor activity is increased in a combined platelet and microparticle sample from cancer patients. Thrombosis Research. 122 (5), 604-609 (2008).
  33. Gurung, S., Perocheau, D., Touramanidou, L., Baruteau, J. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Communication and Signaling. 19 (1), 47 (2021).
  34. Garnier, D., et al. Cancer cells induced to express mesenchymal phenotype release exosome-like extracellular vesicles carrying tissue factor. Journal of Biological Chemistry. 287 (52), 43565-43572 (2012).
  35. Park, J. A., et al. Tissue factor-bearing exosome secretion from human mechanically stimulated bronchial epithelial cells in vitro and in vivo. Journal of Allergy and Clinical Immunology. 130 (6), 1375-1383 (2012).
check_url/fr/65840?article_type=t

Play Video

Citer Cet Article
Hisada, Y., Mackman, N. Extracellular Vesicle Tissue Factor Activity Assay. J. Vis. Exp. (202), e65840, doi:10.3791/65840 (2023).

View Video