Summary

骨质疏松症小鼠模型中的骨小梁微观结构评估

Published: September 08, 2023
doi:

Summary

该协议提供了一种经济有效的方法,通过结合苏木精-伊红(HE)染色和显微计算机断层扫描(Micro-CT)技术,定量评估骨质疏松症小鼠模型中的骨微结构。

Abstract

骨微观结构是指骨组织在微观水平上的排列和质量。了解骨骼的骨骼微观结构对于深入了解骨质疏松症的病理生理学并改善其治疗至关重要。然而,由于骨样本的坚硬和致密特性,处理骨样本可能很复杂。其次,专用软件使图像处理和分析变得困难。在该协议中,我们提出了一种具有成本效益且易于使用的骨小梁微观结构分析解决方案。提供了详细的步骤和注意事项。Micro-CT 是一种无损三维 (3D) 成像技术,可提供骨小梁结构的高分辨率图像。它可以对骨质量进行客观和定量的评估,这就是为什么它被广泛认为是骨质量评估的金标准方法。然而,组织形态测量仍然是必不可少的,因为它提供了关键的细胞水平参数,弥合了骨标本的二维 (2D) 和 3D 评估之间的差距。至于组织学技术,我们选择对骨组织进行脱钙,然后进行传统的石蜡包埋。综上所述,结合这两种方法可以提供更全面、更准确的骨微观结构信息。

Introduction

骨质疏松症是一种普遍存在的代谢性骨病,尤其是在老年人中,并且与脆性骨折的风险增加有关。随着骨质疏松症在中国变得越来越普遍1,对研究小动物骨骼结构的需求将越来越大2,3以前的骨质流失测量方法依赖于二维双能X射线吸收测定法的结果。然而,这并不能捕捉到小梁结构微观结构的变化,而小梁骨是骨骼强度的关键因素4.骨骼的微观结构会影响其强度、刚度和抗断裂性。通过比较正常和病理状态下的骨微结构,可以识别骨质疏松症引起的骨组织形态、结构和功能的变化。这些信息有助于了解骨质疏松症的发展及其与其他疾病的关联。

显微计算机断层扫描 (Micro-CT) 成像最近已成为骨形态学评估的流行技术,它可以提供有关骨结构和密度参数(如骨体积分数、厚度和分离度)的准确和全面的数据 5,6。同时,Micro-CT结果会受到分析软件7的影响。各种商用 Micro-CT 系统使用不同的图像采集、评估和报告方法。这种不一致使得很难比较和解释不同研究报告的结果5.此外,它目前不能取代骨组织形态学,为研究人员提供有关骨骼系统中细胞水平参数的信息8。同时,组织学技术可以直接观察和测量骨骼的微观形态。苏木精和伊红 (HE) 染色是组织学中常用的染色技术,用于可视化细胞和组织的一般结构。它用于识别骨组织的存在及其微结构。

本文采用显微CT结合组织切片技术(苏木精-伊红[HE]染色)采集骨组织图像,对骨小梁骨进行定量分析,以评估骨质疏松症小鼠模型中骨微结构的变化。

Protocol

该动物方案已获得成都中医药大学动物伦理委员会批准(备案号:2020-34)。雌性C57BL/6J小鼠(12周龄,n = 14)随机分为两组,假手术组(假手术组,n = 7)和模型组(OVX组,n = 7)。动物是从商业供应商处购买的(见 材料表)。将所有小鼠保持在22-26°C,湿度为45%-55%的单独笼子中,使其适应新环境1周,并免费获得水和饮食。所有动物实验研究均在成都中医药大学进行,并尽一切努力将…

Representative Results

显微CT分析我们测量了两组小鼠的小梁微观结构参数,并在表1中报告了它们的平均值和SD。图3显示了每组内一些参数(即骨体积与总组织体积的比率、小梁厚度、小梁分离)的分布。 这些结果表明,OVX组和假手术组小鼠在Micro-CT估计的许多参数上存在显着差异。即OVX组骨体积与总组织体?…

Discussion

骨质疏松症可导致频繁骨折,代价高昂,可引起疼痛、残疾,甚至死亡,严重影响患者的生活质量20。多年来,卵巢切除术模型已被公认为研究骨质疏松症的标准方法之一21。骨质疏松症最常见的临床前动物模型是卵巢切除术(OVX)大鼠。尽管如此,对骨骼疾病(包括骨质疏松症)机制的大多数研究都是使用小鼠进行的 22.为了在成年雌性C57 / BL…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项工作得到了四川省中医药管理局(2021YJ0175)和成都中医药大学临床医学院研究生科研创新项目(LCYJSKT2023-11)的支持。

Materials

4% Paraformaldehyde Biosharp BL539A
Adobe Photoshop Adobe Inc.
Ammonia Solution Chengdu Kolon Chemical Co., Ltd 2021070101
Analyze 12.0 AnalyzeDirect, Inc
Anatomical Forceps Jinzhong surgical instrument Co., Ltd J3C030
Anhydrous Ethanol Chengdu Kolon Chemical Co., Ltd 2022070501
Automatic Dyeing Machine Thermo scientific Varistain™ Gemini ES
Bone Microarchitecture Analysis Add-on AnalyzeDirect, Inc
C57BL/6J mice SPF (Beijing) Biotechnology Co., Ltd.
Carrier Slides Nantong Mei Wei De Experimental Equipment Co., Ltd 220518001
Coverslips Nantong Mei Wei De Experimental Equipment Co. 220518001
Decalcification Solution Wuhan Xavier Biotechnology Co., Ltd CR2203047
Delicate Scissors Jinzhong surgical instrument Co., Ltd ZJA010
Embedding box marking machine Thermo scientific  PrintMate AS
Embedding Machine Wuhan Junjie Electronics Co., Ltd JB-P5
Fiji: ImageJ National Institutes of Health, USA
Film Sealer Thermo scientific Autostainer 360
Freezing Table Wuhan Junjie Electronics Co., Ltd JB-L5
H&E Staining Kit Leagene DH0020
Hydrochloric Acid Solution Sichuan Xilong Science Co., Ltd 210608
ImageJ2 Plugin BoneJ 7.0.16
Medical Gauze Shandong Ang Yang Medical Technology Co.
Mersilk 3-0 Silk Braided Non-Absorbable Sutures Ethicon, Inc. SA84G
Needle Holder Jinzhong surgical instrument Co., Ltd J32010
Neutral Balsam Sinopharm Group Chemical Reagent Co., Ltd 10004160
Oven Shanghai Yiheng Scientific Instruments Co., Ltd DHG-9240A
PANNORAMIC Digital Slide Scanners 3DHISTECH Ltd.  PANNORAMIC DESK/MIDI/250/1000
PBS buffer Biosharp G4202
Povidone-iodine solution 5% Chengdu Yongan Pharmaceutical Co., Ltd
Quantum GX2 microCT Imaging System PerkinElmer, Inc.
Rotary Microtome Thermo scientific HM325
Scalpel Quanzhou Excellence Medical Co., Ltd 20170022
Scan & Browse Software 3DHISTECH Ltd.  CaseViewer2.4
Single-Use Sterile Rubber Surgical Gloves Guangdong Huitong Latex Products Group Co., Ltd 22B141EO
Sodium Chloride Solution 0.9% Sichuan Kelun Pharmaceutical Co., Ltd
Sterile Hypodermic Syringes for Single Use Shandong Weigao Group Medical Polymer Products  Co., Ltd
Sterile Medical Suture Needles Shanghai Pudong Jinhuan Medical Products Co., Ltd.  PW8068
Tissue Processor Thermo scientific STP420 ES
Tissue Spreading and Baking Machine Wuhan Junjie Electronics Co., Ltd JK-6
Tribromoethanol Nanjing Aibei Biotechnology Co., Ltd M2920
Wax Trimmer Wuhan Junjie Electronics Co., Ltd JXL-818
Xylene Chengdu Kolon Chemical Co., Ltd 2022051901

References

  1. Wang, J., et al. The prevalence of osteoporosis in China, a community based cohort study of osteoporosis. Frontiers in Public Health. 11, 1084005 (2023).
  2. Stein, M., et al. Why animal experiments are still indispensable in bone research: A statement by the European Calcified Tissue Society. Journal of Bone and Mineral Research. 38 (8), 1045-1061 (2023).
  3. Kerschan-Schindl, K., Papageorgiou, M., Föger-Samwald, U., Butylina, M., Weber, M., Pietschmann, P. Assessment of bone microstructure by micro CT in C57BL/6J mice for sex-specific differentiation. International Journal of Molecular Sciences. 23 (23), 14585 (2022).
  4. Fonseca, H., Moreira-Gonçalves, D., Coriolano, H. J. A., Duarte, J. A. Bone quality: the determinants of bone strength and fragility. Sports Medicine. 44, 37-53 (2014).
  5. Bouxsein, M. L., Boyd, S. K., Christiansen, B. A., Guldberg, R. E., Jepsen, K. J., Müller, R. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. Journal of Bone and Mineral Research. 25 (7), 1468-1486 (2010).
  6. Akhter, M. P., Recker, R. R. High resolution imaging in bone tissue research-review. Bone. 143, 115620 (2021).
  7. Mys, K., et al. Quantification of 3D microstructural parameters of trabecular bone is affected by the analysis software. Bone. 142, 115653 (2021).
  8. Chavassieux, P., Chapurlat, R. Interest of bone histomorphometry in bone pathophysiology investigation: Foundation, present, and future. Frontiers in Endocrinology. 13, 907914 (2022).
  9. Komori, T. Animal models for osteoporosis. European Journal of Pharmacology. 759, 287-294 (2015).
  10. Zhu, S., et al. Ovariectomy-induced bone loss in TNFα and IL6 gene knockout mice is regulated by different mechanisms. Journal of Molecular Endocrinology. 60 (3), 185-198 (2018).
  11. Baum, T., et al. Osteoporosis imaging: effects of bone preservation on MDCT-based trabecular bone microstructure parameters and finite element models. BMC Medical Imaging. 15, 22 (2015).
  12. Nazarian, A., Hermannsson, B. J., Muller, J., Zurakowski, D., Snyder, B. D. Effects of tissue preservation on murine bone mechanical properties. Journal of Biomechanics. 42 (1), 82-86 (2009).
  13. Martín-Badosa, E., Amblard, D., Nuzzo, S., Elmoutaouakkil, A., Vico, L., Peyrin, F. Excised bone structures in mice: imaging at three-dimensional synchrotron radiation micro CT. Radiology. 229 (3), 921-928 (2003).
  14. Egan, K. P., Brennan, T. A., Pignolo, R. J. Bone histomorphometry using free and commonly available software. Histopathology. 61 (6), 1168-1173 (2012).
  15. Brandi, M. L. Microarchitecture, the key to bone quality. Rheumatology. 48 (suppl_4), iv3-iv8 (2009).
  16. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 9 (7), 676-682 (2012).
  17. Domander, R., Felder, A. A., Doube, M. BoneJ2-refactoring established research software. Wellcome Open Research. 6, 37 (2021).
  18. Parfitt, A. M., et al. Bone histomorphometry: standardization of nomenclature, symbols, and units: report of the ASBMR Histomorphometry Nomenclature Committee. Journal of Bone and Mineral Research. 2 (6), 595-610 (1987).
  19. Kazama, J. J., Koda, R., Yamamoto, S., Narita, I., Gejyo, F., Tokumoto, A. Cancellous bone volume is an indicator for trabecular bone connectivity in dialysis patients. Clinical Journal of the American Society of Nephrology: CJASN. 5 (2), 292-298 (2010).
  20. Watts, N. B. Postmenopausal osteoporosis: A clinical review. Journal of Women’s Health. 27 (9), 1093-1096 (2018).
  21. Thompson, D. D., Simmons, H. A., Pirie, C. M., Ke, H. Z. FDA Guidelines and animal models for osteoporosis. Bone. 17 (4), S125-S133 (1995).
  22. Iwaniec, U. T., Yuan, D., Power, R. A., Wronski, T. J. Strain-dependent variations in the response of cancellous bone to ovariectomy in mice. Journal of Bone and Mineral Research. 21 (7), 1068-1074 (2006).
  23. Ferguson, V. L., Ayers, R. A., Bateman, T. A., Simske, S. J. Bone development and age-related bone loss in male C57BL/6J mice. Bone. 33 (3), 387-398 (2003).
  24. Glatt, V., Canalis, E., Stadmeyer, L., Bouxsein, M. L. Age-related changes in trabecular architecture differ in female and male C57BL/6J mice. Journal of Bone and Mineral Research. 22 (8), 1197-1207 (2007).
  25. Seeman, E. The structural and biomechanical basis of the gain and loss of bone strength in women and men. Endocrinology and Metabolism Clinics. 32 (1), 25-38 (2003).
  26. Ticha, P., et al. A novel cryo-embedding method for in-depth analysis of craniofacial mini pig bone specimens. Scientific Reports. 10 (1), 19510 (2020).
  27. Genant, H. K., Engelke, K., Prevrhal, S. Advanced CT bone imaging in osteoporosis. Rheumatology. 47 (suppl_4), iv9-iv16 (2008).
  28. Zaw Thin, M., Moore, C., Snoeks, T., Kalber, T., Downward, J., Behrens, A. Micro-CT acquisition and image processing to track and characterize pulmonary nodules in mice. Nature Protocols. 18 (3), 990-1015 (2023).
check_url/fr/65880?article_type=t

Play Video

Citer Cet Article
Li, J., Hu, Y., You, H., Li, R., Ran, Q., Ouyang, T., Huang, Y. Trabecular Bone Microarchitecture Evaluation in an Osteoporosis Mouse Model. J. Vis. Exp. (199), e65880, doi:10.3791/65880 (2023).

View Video