Summary

一种高效、快速的小鼠肾小球标记和分析方法

Published: February 09, 2024
doi:

Summary

本研究提出了一套易于使用、完整且简单的方法来标记和分析来自 CUBIC 清除的小鼠肾脏的肾小球。使用异硫氰酸荧光素 (FITC)-葡聚糖、光片荧光显微镜 (LSFM) 或常见的共聚焦显微镜和软件(如 Imaris)可以轻松可靠地获得肾小球数量和体积等数据。

Abstract

肾小球是肾脏的基本单位;因此,研究肾小球对于了解肾功能和病理学至关重要。生物成像提供直观的信息;因此,标记和观察肾小球具有重要意义。然而,目前使用的肾小球观察方法需要复杂的操作,并且结果可能会丢失标签细节或三维(3D)信息。清晰、畅通无阻的脑成像鸡尾酒和计算分析(CUBIC)组织清除技术已广泛应用于肾脏研究,可实现更准确的检测和更深的检测深度。我们发现,通过尾静脉注射中等分子量的FITC-葡聚糖,然后采用CUBIC透明化方法,可以快速有效地标记小鼠肾小球。清除的小鼠肾脏可以通过光片显微镜(或切片时的共聚焦显微镜)扫描,以获得整个肾脏中所有肾小球的三维图像堆栈。使用适当的软件处理,肾小球信号可以很容易地数字化并进一步分析,以测量肾小球的数量、体积和频率。

Introduction

肾小球的数量和体积对于各种肾脏疾病的诊断和治疗非常重要1,2,3,4,5。肾小球数估计的黄金标准是物理解剖器/分馏器组合。然而,这种方法需要特殊的试剂和设备,使其速度慢且昂贵6,7,8,9。活检提供了丰富的信息,但显然,这种方法只适用于粗略估计10,11。医学成像技术,包括磁共振成像(MRI)、计算机断层扫描(CT)和X射线,也广泛用于肾小球检测12,13,14,15,但这些技术需要笨重的仪器。新方法,如基质辅助激光解吸/电离 (MALDI) 成像质谱仪16 或厚薄切片法17,也已用于肾小球检测,尽管它们仍然繁琐而费力。

在透明技术的帮助下,可以观察更深的深度,并从厚组织甚至整个器官中获得更丰富、更完整的信息18,19,20,21,22,23。因此,透明技术在肾脏研究中得到了广泛的应用24。还涉及清除肾脏中肾小球的观察和检测。然而,这些已发表的文章要么只是简单地提到肾小球检测25,要么使用难以实现的标记方法,如转基因动物26、自产染料13或高浓度抗体孵育27来标记肾小球。此外,尽管研究分析了清除肾脏中的肾小球,但分析总是有限的13或依赖于作者自己建立的分析算法26

我们之前已经展示了一种更方便的方法来标记小鼠肾脏中的肾小球28。通过使用 Imaris,我们发现可以快速获得肾小球计数、频率和体积。因此,在这里,我们提出了一套更易于访问、更全面和更简化的方法来标记和分析小鼠肾脏的肾小球。

Protocol

本研究使用成年C57BL / 6小鼠(6周龄,25-30g)。所有程序均按照当地动物福利和实验伦理法规进行。该研究已获得四川大学华西医院生物医学研究伦理委员会的批准。 1. 肾小球标记和组织制备 肾小球标记将FITC-葡聚糖(10mg)以1:1(1mg:1mL)的比例溶解在1x磷酸盐缓冲盐水(PBS)中,以制备工作探针溶液。注意:工作溶液可以在4°C下储存1个月。</l…

Representative Results

本研究为小鼠肾脏肾小球的标记和分析提供了一种简单有效的方法。 肾小球(血管)可以通过血管内注射 FITC-葡聚糖很好地标记。清除过程后,肾脏变得透明(图1A),并且可以通过使用光片显微镜(图1B)或共聚焦显微镜(图1C)清楚地观察到肾小球。共聚焦显微镜的扫描深度有限,因此应将肾脏切成约 1 ?…

Discussion

组织清除技术可分为3组或4组29,30,31。有机溶剂型组织透明化(例如DISCO和PEGASOS)、水性组织透明化(例如CUBIC)和水凝胶包埋组织透明化(例如CLARITY)均已应用于肾脏透明化25,26,28,32。正如我们已经证明的那样,当肾小球(血管)…

Divulgations

The authors have nothing to disclose.

Acknowledgements

本研究得到了国家自然科学基金(82204951)和四川省科学技术计划(2020JDRC0102)的资助。

Materials

4% PFA Biosharp 7007171800 Fixation reaagen
502 Glue  Deli 7146 For fixing the kidney to the sample fixing adapter 
Antipyrine Aladdin A110660 Clearing reagent
Brain Matrix RWD Life Science 1mm 40-75 Tissue slicing
Confocal microscopy Nikon A1plus Image acquisition
FITC-Dextran Sigma-Aldrich FD150S Labeling reagent
Light sheet fluorescence microscopy  Zeiss Light sheet 7  Image acquisition
Mice Ensiweier Adult C57BL/6 mice (6 weeks of age, 25–30 g) 
N-Butyldiethanolamine Aladdin B299095 Clearing reagent
Nicotinamide Aladdin N105042 Clearing reagent
Pentobarbital Natriumsalz Sigma-Aldrich P3761
Tail vein fixator JINUOTAI JNT-FS35 Fix the mouse for vail injection
Triton X-100 Sigma-Aldrich T8787 Clearing reagent

References

  1. Hoy, W. E., et al. Nephron number, glomerular volume, renal disease and hypertension. Current Opinion in Nephrology and Hypertension. 17 (3), 258-265 (2008).
  2. Bertram, J. F., Douglas-Denton, R. N., Diouf, B., Hughson, M. D., Hoy, W. E. Human nephron number: implications for health and disease. Pediatric Nephrology. 26 (9), 1529-1533 (2011).
  3. Nyengaard, J. R., Bendtsen, T. F. Glomerular number and size in relation to age, kidney weight, and body surface in normal man. The Anatomical Record. 232 (2), 194-201 (1992).
  4. Rasch, R. Prevention of diabetic glomerulopathy in streptozotocin diabetic rats by insulin treatment. Kidney size and glomerular volume. Diabetologia. 16 (2), 125-128 (1979).
  5. Puelles, V. G., et al. Glomerular number and size variability and risk for kidney disease. Current Opinion in Nephrology and Hypertension. 20 (1), 7-15 (2011).
  6. Bertram, J. F., et al. Why and how we determine nephron number. Pediatric Nephrology. 29, 575-580 (2014).
  7. Bertram, J. F., Soosaipillai, M. C., Ricardo, S. D., Ryan, G. B. Total numbers of glomeruli and individual glomerular cell types in the normal rat kidney. Cell and Tissue Research. 270 (1), 37-45 (1992).
  8. Nyengaard, J. R. Stereologic methods and their application in kidney research. Journal of the American Society of Nephrology. 10 (5), 1100-1123 (1999).
  9. Bertram, J. F. Analyzing renal glomeruli with the new stereology. International Review of Cytology. 161, 111-172 (1995).
  10. Lødrup, A. B., Karstoft, K., Dissing, T. H., Pedersen, M., Nyengaard, J. R. Kidney biopsies can be used for estimations of glomerular number and volume: a pig study. Virchows Archiv. 452 (4), 393-403 (2008).
  11. Lane, P. H., Steffes, M. W., Mauer, S. M. Estimation of glomerular volume: a comparison of four methods. Kidney International. 41 (4), 1085-1089 (1992).
  12. Baldelomar, E. J., Charlton, J. R., deRonde, K. A., Bennett, K. M. In vivo measurements of kidney glomerular number and size in healthy and Os(/+) mice using MRI. American Journal of Physiology-Renal Physiology. 317 (4), F865-F873 (2019).
  13. Huang, J., et al. A cationic near infrared fluorescent agent and ethyl-cinnamate tissue clearing protocol for vascular staining and imaging. Scientific Reports. 9 (1), 521 (2019).
  14. Beeman, S. C., et al. Measuring glomerular number and size in perfused kidneys using MRI. American Journal of Physiology-Renal Physiology. 300 (6), F1454-F1457 (2011).
  15. Basgen, J. M., Steffes, M. W., Stillman, A. E., Mauer, S. M. Estimating glomerular number in situ using magnetic resonance imaging and biopsy. Kidney International. 45 (6), 1668-1672 (1994).
  16. Prentice, B. M., Caprioli, R. M., Vuiblet, V. Label-free molecular imaging of the kidney. Kidney International. 92 (3), 580-598 (2017).
  17. Sanden, S. K., Wiggins, J. E., Goyal, M., Riggs, L. K., Wiggins, R. C. Evaluation of a thick and thin section method for estimation of podocyte number, glomerular volume, and glomerular volume per podocyte in rat kidney with Wilms’ tumor-1 protein used as a podocyte nuclear marker. Journal of the American Society of Nephrology. 14 (10), 2484-2493 (2003).
  18. Hama, H., et al. Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nature Neuroscience. 14 (11), 1481-1488 (2011).
  19. Susaki, E. A., et al. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell. 157 (3), 726-739 (2014).
  20. Lloyd-Lewis, B., et al. Imaging the mammary gland and mammary tumours in 3D: optical tissue clearing and immunofluorescence methods. Breast Cancer Research. 18 (1), 127 (2016).
  21. Ren, Z., et al. CUBIC-plus: An optimized method for rapid tissue clearing and decolorization. Biochemical and Biophysical Research Communications. 568, 116-123 (2021).
  22. Azaripour, A., et al. A survey of clearing techniques for 3D imaging of tissues with special reference to connective tissue. Progress in Histochemistry and Cytochemistry. 51 (2), 9-23 (2016).
  23. Matsumoto, K., et al. Advanced CUBIC tissue clearing for whole-organ cell profiling. Nature Protocols. 14 (12), 3506-3537 (2019).
  24. Puelles, V. G., Moeller, M. J., Bertram, J. F. We can see clearly now: optical clearing and kidney morphometrics. Current Opinion in Nephrology and Hypertension. 26 (3), 179-186 (2017).
  25. Zhu, J., et al. Optimal combinations of fluorescent vessel labeling and tissue clearing methods for three-dimensional visualization of vasculature. Neurophotonics. 9 (4), 045008 (2022).
  26. Klingberg, A., et al. Fully automated evaluation of total glomerular number and capillary tuft size in nephritic kidneys using lightsheet microscopy. Journal of the American Society of Nephrology. 28 (2), 452-459 (2017).
  27. Renier, N., et al. iDISCO: A simple, rapid method to immunolabel large tissue samples for volume imaging. Cell. 159 (4), 896-910 (2014).
  28. Bai, L., et al. A simple and effective vascular network labeling method for transparent tissues of mice. Journal of Biophotonics. 16 (7), e202300042 (2023).
  29. Richardson, D. S., Lichtman, J. W. Clarifying tissue clearing. Cell. 162 (2), 246-257 (2015).
  30. Kolesová, H., Olejníčková, V., Kvasilová, A., Gregorovičová, M., Sedmera, D. J. I. Tissue clearing and imaging methods for cardiovascular development. Iscience. 238 (2), 489-507 (2021).
  31. Tian, T., Yang, Z., Li, X. Tissue clearing technique: Recent progress and biomedical applications. Journal of Anatomy. 238 (2), 489-507 (2021).
  32. Du, H., Hou, P., Zhang, W., Li, Q. Advances in CLARITY-based tissue clearing and imaging. Experimental and Therapeutic. 16 (3), 1567-1576 (2018).
  33. Ertürk, A., Lafkas, D., Chalouni, C. Imaging cleared intact biological systems at a cellular level by 3DISCO. Journal of Visualized Experiments: JoVE. 89, e51382 (2014).
check_url/fr/65973?article_type=t

Play Video

Citer Cet Article
Bai, L., Wu, Y., Dai, W., Shi, Q., Wu, L., Zhang, J., Zheng, L. An Efficient and Fast Method for Labeling and Analyzing Mouse Glomeruli. J. Vis. Exp. (204), e65973, doi:10.3791/65973 (2024).

View Video