Summary

悬浮培养物生产和纯化腺相关病毒的碘克沙醇密度梯度离心用于体内应用

Published: February 09, 2024
doi:

Summary

腺相关病毒在悬浮细胞培养物中产生,并通过双碘克沙醇密度梯度离心纯化。包括提高总病毒产量、降低病毒沉淀风险和进一步浓缩最终病毒产物的步骤。预期最终滴度达到 1012 个病毒颗粒/mL,适用于临床前 体内 使用。

Abstract

该协议描述了通过碘克沙醇密度梯度离心产生和纯化的重组腺相关病毒(rAAV),这是一种与血清型无关的纯化AAV的方法,于1999年首次描述。rAAV载体广泛用于基因治疗应用,将转基因递送至各种人类细胞类型。在这项工作中,重组病毒是通过用编码转基因、载体衣壳和腺病毒辅助基因的质粒在悬浮培养物中转染 Expi293 细胞来生产的。碘克沙醇密度梯度离心法根据颗粒密度纯化完整的AAV颗粒。此外,这种现在无处不在的方法还包括三个步骤,以提高病毒总产量,降低由于污染蛋白质而沉淀的风险,并进一步浓缩最终病毒产物,分别:使用聚乙二醇(PEG)和氯化钠溶液从细胞培养基中沉淀病毒颗粒,引入第二轮碘克沙醇密度梯度离心, 以及通过离心过滤器进行缓冲液置换。使用这种方法,可以在体内使用时始终如一地达到 1012 个病毒颗粒/mL 的异常纯度。

Introduction

重组腺相关病毒 (rAAV) 载体是治疗遗传性疾病(包括脊髓性肌萎缩症、视网膜营养不良症和 A 型血友病)的广泛使用工具 1,2,3。rAAV 载体经过工程设计,缺乏野生型 AAV 4 中存在的病毒基因,野生型 AAV4 是一种具有线性单链 4.7 kb DNA 基因组的小型非包膜二十面体病毒。AAV 于 1960 年代首次被发现是腺病毒制剂的污染物5。尽管其衣壳尺寸小,将可包装的转基因的大小限制为最大 4.9 kb(不包括ITRs 6),但 AAV 可用于转基因递送,因为它在人类中无致病性,允许在许多分裂和非分裂细胞类型中表达转基因,并且免疫原性作用有限7

作为依赖细小病毒属的成员,rAAV 的产生依赖于腺病毒或单纯疱疹病毒8 中存在的辅助基因的表达。已经开发了几种产生 rAAV 的策略,但在用腺病毒 E1A/E1B 辅助基因转化的 HEK293 细胞中生产是当今使用的最成熟的方法9。rAAV 生产的一般方法始于 HEK293 细胞的转染,其中三种质粒分别含有反转末端重复序列 (ITR)、AAV 代表 基因以及其他腺病毒辅助基因中的转基因。转染后 72 小时,收获并处理细胞以纯化含有转基因的 rAAV。

在开发用于治疗目的的新型rAAV载体时,一个主要目标是生产具有更高转导效率的载体。靶细胞转导效率的提高意味着 rAAV 必要临床剂量的降低,从而降低从抗体介导的中和到急性毒性的不良免疫原性反应的可能性10,11。为了提高rAAV载体的转导功效,可以对包装的基因组或衣壳进行改变。通过包装基因组设计调整转导功效的可行方法包括掺入强效和组织特异性启动子、深思熟虑地选择 mRNA 加工元件以及编码序列优化以提高翻译效率12。对衣壳进行改变的目的是增加目标人类细胞类型的趋向性。开发新的 rAAV 转基因递送载体衣壳的努力通常以专注于合理设计具有靶向特定细胞受体的特定突变的 AAV 衣壳或定向进化以从高复杂性组合衣壳库中识别具有特定细胞类型嗜性的衣壳,而不靶向一种特定受体(尽管有些小组结合了这些方法)1314,15.在定向进化方法中,组合衣壳文库是使用在衣壳外部具有突变可变区域的特定血清型骨架构建的 16。组合衣壳文库通常由非源自人类的 AAV 血清型构建,从而降低临床使用期间预先存在免疫的风险10。因此,可应用于任何血清型的纯化方法都是理想的选择,可以消除对作为这些文库骨架的不太常用的血清型进行血清型特异性优化的需要。

碘克沙醇密度梯度离心用于纯化高滴度的具有高感染性的 rAAV17。在该方案中,rAAV在悬浮细胞培养物中产生,以减少生产大滴度AAV所需的劳动力。还包括一个离心步骤,以澄清细胞裂解物,以减少污染蛋白质的存在并降低病毒沉淀的风险。该方案是一种具有成本效益的方法,用于生产适合临床前使用的高纯度rAAV制剂。

Protocol

表1提供了该协议中使用的溶液和缓冲液的组成。 溶液 组成 AAV裂解缓冲液 1.2 mL 5 M NaCl 溶液 2 mL 1 M Tris-HCl pH 8.5 溶液 80 uL 1 M MgCl2 溶液 mQ 水至 40 mL…

Representative Results

该方法可用于获得每mL至少10-12个病毒颗粒的滴度。使用补充表1中提供的ITR引物通过qPCR获得滴度(图3),通过ddPCR或任何其他滴度方法。使用包装效率低下的衣壳的帽基因可能导致滴度欠佳。 结果欠佳的另一个可能来源是 Expi293 细胞的转导效率差。建议在转染当天的细胞密度为 3-4 x 106 vc/mL,并且细胞活力接近 98%。在…

Discussion

双碘克沙醇密度梯度纯化方案是通用方法,因为它适用于任何AAV突变体变体,无论其受体特异性如何。早期的AAV纯化方法依赖于颗粒密度,包括CsCl中的等脁离心和连续蔗糖密度梯度离心19。后来,开发了血清型特异性方法,该方法利用与琼脂糖柱20 结合的单克隆抗体。1999 年开发了一种使用不连续碘克沙醇梯度的基于密度的新型纯化方法,并产生了比从 CsCl 梯?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

没有。

Materials

5810 R benchtop centrifuge Eppendorf 22625501
8-channel peristaltic pump  Watson-Marlow 020.3708.00A
Automated cell counter  NanoEntek EVE-MC
Avanti J-E high-speed centrifuge Beckman Coulter 369001
Benzonase Thermo Scientific 88701
Biological safety cabinet Labconco 322491101
CO2 incubator with shaker  Set at 8% CO2 and 37 °C
Conical centrifuge tubes Thermo Scientific 339652 50 mL
Conical centrifuge tubes Thermo Scientific 339650 15 mL
Disposable micro-pipets Fisherbrand 21-164-2G Capillaries
Dulbecco's phosphate buffered saline without CaCl2 and MgCl2  (DPBS) (10x) Sigma-Aldrich D1408
ECLIPSE Ts2R-FL inverted microscope Nikon
Expi293 Expression Medium Gibco A1435101
Expi293F cells Gibco A14527
Filter tips USA Scientific 1126-7810 1000 µL
Filter tips USA Scientific 1120-8810 200 µL
Filter tips USA Scientific 1120-1810 20 µL
Filter tips USA Scientific 1121-3810 10 µL
Hypodermic needles Tyco Healthcare 820112 20 GA x 1-1/2 A
Ice bucket with lid VWR 10146-184
JS-5.3 rotor Beckman Coulter 368690
Magnesium chloride solution (1 M) Millipore Sigma M1028-100ML
Metal stand and clamp  Fisherbrand 05-769-6Q
Microcentrifuge tubes Eppendorf 22600028 1.5 mL
Needle nose pliers
Optima XE-90 ultracentrifuge Beckman Coulter A94471
Opti-MEM I Reduced-Serum Medium Gibco 31985062
OptiPrep density gradient media (iodixanol) Serumwerk AXS-1114542 60% iodixanol solution
P1000 Pipet Gilson F144059M
P2 Pipet Gilson F144054M
P20 Pipet Gilson F144056M
P200 Pipet Gilson F144058M
Phenol red solution Sigma-Aldrich P0290
Phosphate buffered saline (PBS) Sigma-Aldrich P4474
Pipet-Aid XP pipette controller Drummond Scientific 4-000-101
Plasmid pCapsid De novo or Addgene, etc.  N/A We used pACGrh74. 
Plasmid pHelper Addgene 112867
Plasmid pTransgene De novo or Addgene, etc.  N/A We used pdsAAV-GFP.
Pluronic F-68 polyol solution (10%) Mp Biomedicals 92750049
Polyethylene glycol 8000 Research Products International P48080-500.0
Polyethylenimine HCl Max (PEI-Max) Polysciences NC1038561 Dilute in water to 40 μM
Polypropylene centrifuge tubes, sterile Corning 431123 500 mL
Polypropylene centrifuge tubes, sterile Corning 430776 250 mL
Polypropylene Optiseal tubes Beckman Coulter 361625
Serological pipettes Alkali Scientific SP250-B 50 mL
Serological pipettes Alkali Scientific SP225-B 25 mL
Serological pipettes Alkali Scientific SP210-B 10 mL
Serological pipettes Alkali Scientific SP205-B 5 mL
Shaker flasks Fisherbrand PBV1000 1 L
Shaker flasks Fisherbrand PBV50-0 500 mL
Shaker flasks Fisherbrand PBV250 250 mL
Shaker flasks Fisherbrand PBV12-5 125 mL
Sodium chloride solution (5 M) Fisher Scientific NC1752640
Sterile syringes Fisherbrand 14-955-458 5 mL
Syringe filter Millipore SLGV013SL 0.22 micron
Tris-HCl pH 8.5 (1 M) Kd Medical RGE3363
Trypan blue solution Gibco 15250061
Tube rack assembly Beckman Coulter 361646
Tube spacers (x4) Beckman Coulter 361669
Tubing for peristaltic pump Fisher Scientific 14190516
Type 70 Ti fixed-angle titanium rotor Beckman Coulter 337922
Ultra low temperature freezer Set at -70 °C
Vivaspin 20 centrifugal concentrator Sartorius VS2041
Water bath  Set at 37 °C

References

  1. Strauss, K. A., et al. Onasemnogene abeparvovec for presymptomatic infants with three copies of SMN2 at risk for spinal muscular atrophy: the Phase III SPR1NT trial. Nat Med. 28 (7), 1390-1397 (2022).
  2. Fuller-Carter, P. I., Basiri, H., Harvey, A. R., Carvalho, L. S. Focused update on AAV-based gene therapy clinical trials for inherited retinal degeneration. BioDrugs. 34 (6), 763-781 (2020).
  3. George, L. A., et al. Multiyear factor VIII expression after AAV gene transfer for hemophilia A. N Engl J Med. 385 (21), 1961-1973 (2021).
  4. Naso, M. F., Tomkowicz, B., Perry, W. L., Strohl, W. R. Adeno-Associated Virus (AAV) as a vector for gene therapy. Biodrugs. 31 (4), 317-334 (2017).
  5. Atchison, R. W., Casto, B. C., Hammon, W. M. c. D. Adenovirus-associated defective virus particles. Science. 149 (3685), 754-756 (1965).
  6. Wu, Z., Yang, H., Colosi, P. Effect of genome size on AAV vector packaging. Mol Ther. 18 (1), 80-86 (2010).
  7. Samulski, R. J., Muzyczka, N. AAV-mediated gene therapy for research and therapeutic purposes. Annu Rev Virol. 1 (1), 427-451 (2014).
  8. Zolotukhin, S. Production of recombinant adeno-associated virus vectors. Hum Gene Ther. 16 (5), 551-557 (2005).
  9. Penaud-Budloo, M., François, A., Clément, N., Ayuso, E. Pharmacology of recombinant adeno-associated virus production. Mol Ther – Methods Clin Dev. 8, 166-180 (2018).
  10. Costa-Verdera, H., et al. Understanding and Tackling immune responses to adeno-associated viral vectors. Hum Gene Ther. 34 (17-18), 836-852 (2023).
  11. Ertl, H. C. J. Mitigating serious adverse events in gene therapy with AAV Vectors: Vector dose and immunosuppression. Drugs. 83 (4), 287-298 (2023).
  12. Pupo, A., et al. AAV vectors: The Rubik’s cube of human gene therapy. Mol Ther. 30 (12), 3515-3541 (2022).
  13. Marsic, D., et al. Vector design tour de force: Integrating combinatorial and rational approaches to derive novel adeno-associated virus variants. Mol Ther. 22 (11), 1900-1909 (2014).
  14. Grimm, D., Zolotukhin, S. E Pluribus Unum: 50 Years of research, millions of viruses, and one goal-tailored acceleration of AAV evolution. Mol Ther. 23 (12), 1819-1831 (2015).
  15. Biswas, M., et al. Engineering and in vitro selection of a novel AAV3B variant with high hepatocyte tropism and reduced seroreactivity. Mol Ther – Methods Clin Dev. 19, 347-361 (2020).
  16. Perabo, L., et al. In vitro selection of viral vectors with modified tropism: the adeno-associated virus display. Mol Ther. 8 (1), 151-157 (2003).
  17. Crosson, S. M., Dib, P., Smith, J. K., Zolotukhin, S. Helper-free production of laboratory grade AAV and purification by iodixanol density gradient centrifugation. Mol Ther – Methods Clin Dev. 10, 1-7 (2018).
  18. Chan, C., Harris, K. K., Zolotukhin, S., Keeler, G. D. Rational design of AAV-rh74, AAV3B, and AAV8 with limited liver targeting. Viruses. 15 (11), 2168 (2023).
  19. Schmidt, O. W., Cooney, M. K., Foy, H. M. Adeno-associated virus in adenovirus type 3 conjunctivitis. Infect Immun. 11 (6), 1362-1370 (1975).
  20. Grimm, D., Kern, A., Rittner, K., Kleinschmidt, J. A. Novel tools for production and purification of recombinant adenoassociated virus vectors. Hum Gene Ther. 9 (18), 2745-2760 (1998).
  21. Zolotukhin, S., et al. Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Ther. 6 (6), 973-985 (1999).
  22. Clark, K. R., Liu, X., Mcgrath, J. P., Johnson, P. R. Highly purified recombinant adeno-associated virus vectors are biologically active and free of detectable helper and wild-type viruses. Hum Gene Ther. 10 (6), 1031-1039 (1999).
  23. Debelak, D., et al. Cation-exchange high-performance liquid chromatography of recombinant adeno-associated virus type 2. J Chromatogr B Biomed Sci App. 740 (2), 195-202 (2000).
  24. Burova, E., Ioffe, E. Chromatographic purification of recombinant adenoviral and adeno-associated viral vectors: methods and implications. Gene Ther. 12 (1), S5-S17 (2005).
  25. Adams, B., Bak, H., Tustian, A. D. Moving from the bench towards a large scale, industrial platform process for adeno-associated viral vector purification. Biotechnol Bioeng. 117 (10), 3199-3211 (2020).
  26. Grieger, J. C., Choi, V. W., Samulski, R. J. Production and characterization of adeno-associated viral vectors. Nat Protoc. 1 (3), 1412-1428 (2006).
  27. Florea, M., et al. High-efficiency purification of divergent AAV serotypes using AAVX affinity chromatography. Mol Ther Methods Clin Dev. 28, 146-159 (2022).
  28. Chamberlain, K., Riyad, J. M., Weber, T. Expressing transgenes that exceed the packaging capacity of adeno-associated virus capsids. Hum Gene Ther Methods. 27 (1), 1-12 (2016).
  29. Green, E. A., Hamaker, N. K., Lee, K. H. Comparison of vector elements and process conditions in transient and stable suspension HEK293 platforms using SARS-CoV-2 receptor binding domain as a model protein. BMC Biotechnol. 23 (1), 7 (2023).
  30. Erbacher, P., Zou, S., Bettinger, T., Steffan, A. M., Remy, J. S. Chitosan-based vector/DNA complexes for gene delivery: Biophysical characteristics and transfection ability. Pharm Res. 15 (9), 1332-1339 (1998).
  31. Vandenberghe, L. H., et al. Efficient serotype-dependent release of functional vector into the culture medium during adeno-associated virus manufacturing. Hum Gene Ther. 21 (10), 1251-1257 (2010).
  32. Summerford, C., Samulski, R. J. Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol. 72 (2), 1438-1445 (1998).
  33. Wright, J. F., et al. Identification of factors that contribute to recombinant AAV2 particle aggregation and methods to prevent its occurrence during vector purification and formulation. Mol Ther. 12 (1), 171-178 (2005).
  34. Gruntman, A. M., et al. Stability and compatibility of recombinant adeno-associated virus under conditions commonly encountered in human gene therapy trials. Hum Gene Ther Methods. 26 (2), 71-76 (2015).
  35. Srivastava, A. Rationale and strategies for the development of safe and effective optimized AAV vectors for human gene therapy. Mol Ther Nucleic Acids. 32, 949-959 (2023).
  36. Mullard, A. FDA approves first gene therapy for Duchenne muscular dystrophy, despite internal objections. Nat Rev Drug Discov. 22 (8), 610-610 (2023).
  37. Center for Biologics Evaluation and Research. Approved Cellular and Gene Therapy Products. US Food Drug Adm. , (2023).
  38. Kang, L., et al. AAV vectors applied to the treatment of CNS disorders: Clinical status and challenges. J Control Release Off J Control Release Soc. 355, 458-473 (2023).
  39. De Wolf, D., Singh, K., Chuah, M. K., VandenDriessche, T. Hemophilia gene therapy: The end of the beginning. Hum Gene Ther. 34 (17-18), 782-792 (2023).
  40. Simons, E. J., Trapani, I. The opportunities and challenges of gene therapy for treatment of inherited forms of vision and hearing loss. Hum Gene Ther. 34 (17-18), 808-820 (2023).
check_url/fr/66460?article_type=t

Play Video

Citer Cet Article
Harris, K. K., Kondratov, O., Zolotukhin, S. Suspension Culture Production and Purification of Adeno-Associated Virus by Iodixanol Density Gradient Centrifugation for In Vivo Applications. J. Vis. Exp. (204), e66460, doi:10.3791/66460 (2024).

View Video