JoVE Science Education
Analytical Chemistry
Un abonnement à JoVE est nécessaire pour voir ce contenu.  Connectez-vous ou commencez votre essai gratuit.
JoVE Science Education Analytical Chemistry
Internal Standards
  • 00:00Vue d'ensemble
  • 01:14Principles of Internal Standards
  • 03:38Preparation of an Internal Standard Calibration Curve
  • 05:13Preparation of a Real Sample with an Internal Standard
  • 07:05Applications
  • 08:54Summary

Interne Standards

English

Diviser

Vue d'ensemble

Quelle: Labor von Dr. B. Jill Venton – University of Virginia

Das Ziel vieler chemischer Analysen ist eine Quantitative Analyse, wo die Menge einer Substanz in einer Probe bestimmt. Um die Konzentration eines unbekannten aus einer Stichprobe genau zu berechnen, ist die sorgfältige Probenvorbereitung Schlüssel. Jedes Mal, wenn eine Probe verarbeitet oder übertragen wird, können einige der Probe verloren gehen. Allerdings gibt es Strategien zur Minimierung der Probenverlust. Es gibt auch Strategien zur Bewältigung der Probenverlust und noch genaue Messungen der Konzentration.

Zur Minimierung von Probenverlust ist Ideal um die Anzahl der Beispielschritte Handhabung und Übertragung zu minimieren. Beispielsweise reduziert die Massierung von einer festen Probe direkt in eine Flasche, der eine Lösung erzielt werden einen Transfer-Schritt. Wenn es notwendig, aus einer Flasche auf einen anderen übertragen und eine Verdünnung erfolgt, hilft dreifach spülen der Gläser, sicherzustellen, dass die Probe übertragen wird. Andere Strategien sind spezifischer auf die Probe. Proben, die auf Glas, wie zum Beispiel Proteine, adsorbieren könnte beispielsweise besser in Einweg-Polypropylenröhrchen gehandhabt werden. Die Rohre sind nicht hydrophil, also wenn eine kleine Menge der Probe in Wasser pipettiert werden wird, es empfiehlt sich, bereits hinzugefügt haben, das Wasser mit dem Schlauch direkt in das Lösungsmittel die Probe pipettiert werden kann. Es möglicherweise besser zu konzentrieren, anstatt eine Probe durch Verluste aus Insolubilities nach Rehydratation vollständig trocknen.

Eine weitere Quelle von Probenverlust ist durch unvollständige Probe Manipulationen. Beispielsweise wird wenn eine Derivatisierung Verfahren verwendet wird und die Derivatisierung unvollständig ist, dann der volle Betrag der Probe nicht beobachtet. Fehler wie diese sind systematische Fehler und Behebung des Problems, wie das Ändern der Derivatisierung Verfahren gelöst werden können. Eine weitere Ursache für systematische Fehler bei Messungen ist Matrix-Effekte. Diese können Messung bestimmter Stoffe und darstellende Kalibrierungen in der gleichen Matrix stören, da die Probe kann diesen Effekt reduzieren.

Quantitative Analyse wird in der Regel mit entweder extern oder intern Standards durchgeführt. Für externe Standards erfolgt eine Kalibrierkurve durch Messung unterschiedliche bekannteste Konzentration des Analyten von Interesse. Dann ist das Beispiel separat vom Standard ausgeführt. Für interne Standards ist der Standard in der gleichen Probe als der Analyten von Interesse, so dass die Messung gleichzeitig entnommen werden. In der Regel einer anderen Spezies wird hinzugefügt, dass interne Standard des internen Standards und das Verhältnis der Antwort gefordert und der Analyt wird berechnet. Die Idee ist, dass das Verhältnis der Reaktion, genannt der Responsefaktor proportional zu ihrer Konzentration. Während die Methode der Analyten von Interesse und dem internen Standard unterscheiden kann muss, sollte jede Probe-Verluste, die auftreten, nachdem der interne Standard hinzugefügt wird für beide Substanzen ähnlich und somit das Verhältnis der Antwort bleibt die gleiche. Ein besonderer Fall der Verwendung von internen Standards ist die Methode der Standardzusätzen, wo immer größere Mengen des Analyten wird der Projektmappe hinzugefügt und der Ursprungsbetrag des Analyten zurück berechnet. Interne Standards können in der Chromatographie, Elektrochemie und Spektroskopie verwendet werden.

Principles

Procédure

1. richtige Probenbehandlung: Bildet eine Lösung Nehmen Sie ein sauberes Becherglas und Masse die richtige Menge der Probe hinein. Notieren Sie die tatsächliche Masse verwendet. In diesem Beispiel wird eine Lösung von Adenin in einem volumetrischen Kolben für den Einsatz als interner Standard für die nächste Analyse gemacht. Die Masse von Adenin ist 100 mg. Tun nicht direkt in einem volumetrischen Kolben Masse, denn es einen langen Hals hat und die Adenin kann nicht leicht hinzugefügt oder entfernt.</l…

Applications and Summary

Internal standards are used in many fields, including spectroscopy and chromatography. In spectroscopy, internal standards can help correct for random errors due to changes in light source intensity. If a lamp or other light source has variable power, it will affect the absorption and consequently, emission of a sample. However, the ratio of an internal standard to analyte will stay constant, even if the light source does not. One example of this is using lithium (Li) as an internal standard for the analysis of sodium in a blood sample by flame spectroscopy. Li is chemically similar to sodium but is not natively found in blood.

For chromatography, internal standards are often used in both gas chromatography and liquid chromatography. For applications with mass spectrometry as the detector, the internal standard can be an isotopically-labeled analyte, so that the molecular weight (MW) will be different than the analyte of interest. Internal standards are commonly used in pharmaceutical or environmental analyses.

Transcription

Sample loss can occur every time a sample is handled or transferred, thereby making accurate calculations of concentration difficult.

To ensure accuracy, the effects of sample loss must be minimized using careful sample preparation and by limiting the number of sample handling and transfer steps. However, sample loss can also occur due to systematic errors, such as incomplete sample manipulation, matrix effects, and variations in analytic procedure.

These sources of loss can be accounted for by adding a known concentration of a species similar, but not identical, to the compound of interest. This is called an internal standard. Any sample losses that occur to the internal standard should be similar for the analyte, allowing for the concentration to be accurately calculated.

This video will illustrate the use of an internal standard and proper lab technique to account for sample loss when determining the concentration of an unknown.

An internal standard is a substance added in a known amount to standards, samples, and blanks during an analysis.

In chromatography and spectroscopy, the ratio of the signal for the internal standard and the analyte is calculated. This ratio, called the response factor, is proportional to the ratio of the analyte and standard concentrations.

Response factor, R, can be expressed by the following equation, where A represents the analytical signals of the sample and internal standard and C represents the concentrations of the sample and internal standard.

An internal standard can compensate for both systematic and random errors. For example, random errors—such as inconsistencies when measuring a sample—will be the same for both the internal standard and the analyte. Therefore, the ratio of their signals will not change.

For systematic errors, such as matrix effects in solution, the ratio will be unaffected as long as the matrix effect is equal for both the standard and the analyte.

While internal standards provide great benefit, it can be difficult to choose one that is suitable. An internal standard must have a signal that is similar, but not identical, to the analyte. It also cannot affect the measurement of the analyte in any way.

Finally, the concentration must be well known. This is achieved by ensuring that the internal standard is not natively present in the sample; thus, the only source of it in solution is the known concentration added.

In the following experiment, the concentration of caffeine in an unknown sample will be determined by gas chromatography.

This is achieved by creating a calibration curve using known caffeine solutions, with adenine as the internal standard. The slope of the calibration curve is equal to the response factor.

Once the response factor is known, the concentration of the unknown can be calculated from its measured chromatogram area ratio.

Now that you understand the basics of internal standards, let’s take a look at the procedure.

To begin the procedure, accurately weigh 100 mg of the internal standard, adenine, into a clean beaker.

Next, dissolve it in roughly 20 mL of dimethyl sulfoxide, and mix the solution.

Once the adenine has dissolved, pour the solution into a 50-mL volumetric flask.

Rinse the beaker and stir bar with 10 mL of DMSO, and pour the rinse into the flask. Repeat this rinse twice, to ensure proper solution transfer. Fill to the calibration mark, resulting in an internal standard with a concentration of 2 mg/mL.

Next, weigh 100 mg of caffeine into a beaker to prepare a stock solution. Dissolve the caffeine with a small amount of methanol. Then, use 3 rinses to transfer this solution to a fresh 25 mL volumetric flask. This is the 4 mg/mL stock solution. Use it to create 3 caffeine standards.

Next, add 0.2 mL of the internal standard, adenine, to each flask. Fill each to the final volume with methanol. Transfer each solution to a sample vial.

Run each caffeine standard through a gas chromatograph. Calculate the ratio of peak areas for the caffeine versus the adenine standard.

First, weigh 2 g of coffee into a 100-mL beaker, and record the weight.

Next, add 20 mL of methanol to extract the caffeine from the coffee. Allow the solution to stir for 20 min.

Using a Büchner funnel, filter out the coffee grounds. Rinse the beaker with a small amount of methanol, and pour this rinse into the funnel. Repeat the rinse twice.

Measure the final volume of the filtrate; it should be approximately 35 mL.

To prepare the sample for analysis, add 1 mL of the coffee extract to a sample vial. Then, add 0.2 mL of the adenine internal standard, and place the vial into the instrument’s auto-sampler rack.

Run a gas chromatography analysis of the sample, ensuring that the conditions are such that the caffeine and adenine are separate.

After completing the analysis, compute the peak area for both the internal standard and the analyte.

Once all the samples have been analyzed, the standard calibration curve can be determined for the caffeine/adenine solutions by plotting the ratios of the peak areas versus the ratios of the concentrations. The slope of this line, which represents the response factor, was 1.8.

Next, the GC data from the extracted coffee sample is analyzed. The ratio of the peak areas was calculated to be 1.78. Using the response factor and the known concentration of the internal standard, adenine, the concentration of caffeine in the unknown sample was calculated to be 0.33 mg/mL.

Many different types of reactions, across various scientific disciples, utilize internal standards to minimize the effects of errors and sample loss.

The effects of sample loss encountered during sample preparation can be minimized using internal standards, keeping their concentration ratio nearly constant.

In this example, bioactive lipids were extracted from lysed cells using a liquid-liquid extraction process. Stable isotope internal standards were added at the beginning of extraction to account for errors during sample preparation.

Internal standards were not only critical for the preparation of the bioactive lipids, but also for the analysis. The lipids were separated using high-performance liquid chromatography, and analyzed via mass spectrometry.

In spectroscopy, internal standards can help correct for random errors due to changes in light source intensity. If a lamp or other light source has variable power, it will affect the absorption and consequently, emission of a sample. However, the ratio of an internal standard to analyte will stay constant, even if the light source does not.

In chromatography, one of the largest sources of error is the injection. Auto-samplers help minimize this, but error can still be 1–2% relative standard deviation.

In this example, vapor standards containing an internal standard were analyzed using gas chromatography to establish a calibration curve. Once this was complete, the unknown sample could then be measured and the losses due to volatility of the sample accounted for.

You’ve just watched JoVE’s introduction to internal standards. You should now understand best practices for minimizing sample loss, internal standards, and response factors.

Thanks for watching!

Tags

Cite This
JoVE Science Education Database. JoVE Science Education. Internal Standards. JoVE, Cambridge, MA, (2023).