Un abonnement à JoVE est nécessaire pour voir ce contenu.  Connectez-vous ou commencez votre essai gratuit.
Density Gradient Ultracentrifugation
  • 00:00Vue d'ensemble
  • 00:40Principles of Density Gradient Ultracentrifugation
  • 02:47Preparing a Sucrose Density Gradient
  • 04:51Centrifugation
  • 05:55Applications
  • 08:15Summary

Ultracentrifugation en gradient de densité

English

Diviser

Vue d'ensemble

Ultracentrifugation gradient de densité est une technique courante utilisée pour isoler et purifier les structures biomolécules et cellule. Cette technique exploite le fait que, en suspension, les particules qui sont plus denses que le solvant seront sédiments, tandis que ceux qui sont moins denses flottera. Une ultracentrifugeuse haute vitesse est utilisée pour accélérer ce processus afin de séparer les biomolécules dans un gradient de densité, qui peut être établi par des liquides de superposition de diminution de densité dans un tube à centrifuger.

La vidéo portera sur les principes d’ultracentrifugation gradient de densité, y compris une procédure qui montre la préparation de l’échantillon, création d’un gradient de sucrose et ultracentrifugation collection d’analytes fractionnés. La section applications traite d’isolation de plusieurs protéines complexes, isolement des complexes d’acides nucléiques et séparation utilisant des gradients de densité de chlorure de césium.

Ultracentrifugation gradient de densité est une approche commune pour isoler et purifier les structures cellulaires pour expériences biochimiques. La technique utilise une centrifugeuse à grande vitesse, ou ultra, pour séparer les composantes cellulaires dans un gradient de densité non destructive. Cette vidéo décrit les principes d’ultracentrifugation gradient de densité, prévoit une procédure générale en utilisant un gradient de sucrose et discute de certaines applications.

Commençons par examiner les principes des ultracentrifugeuses et gradients de densité. Une suspension contient des particules dans un solvant liquid. En raison de la gravité, les particules plus denses que les sédiments de solvant dehors tandis que ceux moins denses que le flotteur de solvant. Plus la différence de densité entre la particule et le solvant, plus vite la séparation.

Une ultracentrifugeuse contient une unité appelée rotor, qui tourne à des vitesses hautement contrôlés, simulant un fort champ gravitationnel. Dans ce domaine, les différences de densité entre les particules et le solvant sont amplifiés.

La force du champ dépend de la vitesse de rotation. Même un petit rotor à une vitesse de rotation relativement faible peut créer une force de milliers de fois plus forte que le champ gravitationnel de la terre.

Si le tube contient plusieurs liquides de densités différentes, centrifugation les gardera en couches séparées par ordre de densité, avec le liquide plus dense plus proche de la base. Telle une stratification de plusieurs liquides est appelée un « gradient de densité ». Il existe deux types. À l’étape dégradés, de diminution de densité des liquides sont soigneusement en couches sur le dessus, un de l’autre. Dans des gradients continus, les liquides sont mélangés dans des proportions variables, donc la densité diminue en douceur de la base vers le haut.

Organites cellulaires peuvent être séparés en utilisant un gradient de l’étape, par le biais de « centrifugation de gradient de densité isopycnique. » Il s’agit de la procédure plus simple et la plus courante de centrifugation.

Cette procédure est utilisée pour séparer les structures cellulaires. Le plus dense l’organite, plus il descend-avec les mitochondries en haut et en acides nucléiques vers le bas.

Maintenant que vous connaissez les principes qui sous-tendent la technique, nous allons le voir dans le laboratoire.

Avant que la procédure est engagée, cotes de vitesse et de la densité du fabricant est à noter, l’ultracentrifugeuse vérifier et la corrosion. Cette procédure utilise un rotor oscillant-seau.

Tout d’abord, la substance cellulaire est préparé par l’homogénéisation des cellules, qui libère non destructive de leurs organites. L’homogénat peut être fractionnée par centrifugation à basse vitesse préliminaire, pour supprimer les composants de faible densités. Ensuite, les solutions de saccharose sont préparées.

Saccharose est ajouté en quantités croissantes ainsi chaque solution est plus concentré et donc plus dense, que la précédente. La densité exacte des solutions dépendront les composants soient séparées, qui peuvent varier entre les organismes. Les solutions devraient avoir des densités entre celles des composants à être séparés, avec la dernière solution plus dense que le composant le plus dense de l’analyte. Techniques de séparation des composants plus denses que le saccharose, comme les acides nucléiques, sont décrites dans les demandes.

Le gradient de saccharose est maintenant créé dans un tube à centrifuger propre. Une pipette est utilisée pour élaborer la solution plus concentrée de saccharose. Avec le tube qui s’est tenu debout, l’embout de la pipette est placé contre le mur, et le liquide distribué régulièrement vers le bas. Il est important que la zone de travail est exempte de vibrations et d’autres perturbations.

Après avoir remplacé la pointe, les solutions restantes sont ajoutées dans l’ordre décroissant de densité. Ils sont distribués avec soin pour former des couches distinctes et éviter de mélanger. Enfin, environ la moitié d’un millilitre de l’échantillon cellulaire est ajouté au sommet de la pente, et le tube est pesé. Il sert à équilibrer la répartition du poids, la prochaine étape du processus.

Centrifugation doit commencer dès que possible. Le tube est placé dans le rotor, qui est alors équilibré en plaçant des solutions flans de poids égal en s’opposant à fentes. Le rotor est placé dans l’ultracentrifugation et le système scellé. La vitesse de rotation et de la température et l’heure sont définies. Valeurs typiques sont de 4 ° C, avec une force de plus 100 000 x g pendant 16 h.

Après centrifugation, le tube est retiré du rotor, en prenant soin du pour tenir debout et non perturbée. Les différents composants cellulaires ont fractionnés en bandes discrètes entre les couches de la solution. Les fractions peuvent être enlevées avec une seringue. Alternativement, le fond du tube peut être percé avec une aiguille fine, stérilisée et les sorties de fonds collectés dans des tubes stériles. Les composants cellulaires ont été isolés. Ils peuvent être conservés à-80 ° C.

Maintenant que nous avons vu la procédure de base, nous allons étudier certaines applications.

Une application typique est l’isolement de plusieurs protéines complexes dans les cellules végétales. Dans cet exemple, complexes responsables de flux d’électrons cycliques sont être isolés depuis les thylakoïdes, le site de la réaction de la lumière dans la photosynthèse. Cette procédure utilise des solutions discrètes de 14 à 45 % de saccharose. Centrifugation produit de plus 100 000 x g pendant 14 h à 4 ° C.

Parce que les acides nucléiques sont plus denses que le saccharose, centrifugation isopycnique ne peut les séparer des organelles non destructive.

Une technique différente, appelée « centrifugation zonale-taux » est utilisée. Il sépare les organites basés sur leur taux de sédimentation, dont dépendent non seulement sur leur densité, mais aussi sur leurs conformations. Un gradient continu est utilisé pour séparer les composants basés sur cette propriété.

Les étapes de la procédure sont semblables à celles des cas isopycnique. Dans cet exemple, les complexes de RNA-ribosomes sont isolées à l’aide d’un gradient continu de 5 % à 20 %, centrifugés à 230 000 x g. Centrifugation est interrompue après quelques heures pour empêcher la coprécipitation.

Brins d’acide nucléique peuvent être séparés les uns des autres sur la base de la densité.

C’est parce que les brins riche en guanine et cytosine sont plus denses que ceux riches en adénine et de la thiamine. Dans ce cas, la pente ne peut faire de saccharose, saccharose étant moins dense que les acides nucléiques. Au lieu de cela, des gradients de chlorure de césium, généralement à partir de 1,65 à 1,75 g/mL sont utilisés, car ils ont une densité suffisante et une faible viscosité.

Nous voyons ici le plancton ADN étant purifié à l’aide d’un gradient de chlorure de césium continue. Centrifugation se produit à plus 1 000 000 x g pendant 18 h sous vide.

Vous avez juste regardé les vidéo de JoVE sur ultracentrifugation avec un gradient de densité de saccharose. Vous devez maintenant comprendre comment fonctionne un gradient de densité, la construction d’un gradient de l’étape et comment charger et utiliser une ultracentrifugeuse. Merci de regarder !

Procédure

Divulgations

No conflicts of interest declared.

Transcription

Density gradient ultracentrifugation is a common approach to isolate and purify cell structures for biochemical experiments. The technique uses a high-speed, or ultra, centrifuge to nondestructively separate cellular components in a density gradient. This video describes the principles of density gradient ultracentrifugation, provides a general procedure using a sucrose gradient, and discusses some applications.

Let’s start by examining the principles of ultracentrifuges and density gradients. A suspension contains particles in a liquid solvent. Because of gravity, particles denser than the solvent sediment out while those less dense than the solvent float. The greater the difference in density between the particle and the solvent, the faster the separation.

An ultracentrifuge contains a unit called a rotor, which rotates at highly controlled speeds, simulating a strong gravitational field. Within this field, the differences in density between particles and the solvent are magnified.

The strength of the field depends on the speed of rotation. Even a small rotor at a relatively low rotational speed can create a force thousands of times stronger than the earth’s gravitational field.

If a tube contains several liquids of different densities, centrifugation will keep them in separate layers in order of density, with the densest liquid closest to the base. Such a layering of multiple liquids is called a “density gradient.” There are two types. In step gradients, liquids of decreasing density are carefully layered on top one another. In continuous gradients, the liquids are mixed in varying proportions, so the density decreases smoothly from the base upwards.

Cellular organelles can be separated using a step gradient, through “isopycnic density-gradient centrifugation.” This is the simplest and most common centrifugation procedure.

This procedure is used to separate the cellular structures. The more dense the organelle, the further it descends-with mitochondria at the top and nucleic acids towards the bottom.

Now that you know the principles behind the technique, let’s see it in the lab.

Before the procedure is started, the manufacturer’s speed and density ratings should be noted, and the ultracentrifuge checked for corrosion. This procedure uses a swinging-bucket rotor.

First, the cellular material is prepared by homogenizing the cells, which nondestructively releases their organelles. The homogenate may be fractionated through preliminary low-speed centrifugation, to remove low-density components. Next, the sucrose solutions are prepared.

Sucrose is added in increasing amounts so each solution is more concentrated, and therefore denser, than the preceding one. The exact densities of the solutions will depend on the components to be separated, which vary between organisms. The solutions should have densities between those of the components to be separated, with the last solution denser than the densest component of the analyte. Techniques for separating components denser than sucrose, like nucleic acids, are described in the applications.

The sucrose gradient is now created in a clean centrifuge tube. A pipette is used to draw up the most concentrated sucrose solution. With the tube held upright, the pipette tip is placed high against the wall, and the liquid dispensed steadily down. It’s important that the working area is kept free of vibrations and other disturbances.

After replacing the tip, the remaining solutions are added in order of decreasing density. They are dispensed carefully to form distinct layers and avoid mixing. Finally, about half a milliliter of the cellular sample is added atop the gradient, and the tube is weighed. This is used to balance the weight distribution, the next step of the process.

Centrifugation should begin as soon as possible. The tube is placed in the rotor, which is then balanced by placing blank solutions of equal weight in opposing slots. The rotor is placed in the ultracentrifuge and the system sealed. The temperature and rotation speed and time are set. Typical values are 4 °C with a force of over 100,000 x g for 16 h.

After centrifugation, the tube is withdrawn from the rotor, taking care to keep it upright and undisturbed. The different cellular components have fractionated into discrete bands between the solution layers. The fractions can be collected with a syringe. Alternately, the bottom of the tube can be punctured with a fine, sterilized needle and the outflow collected in sterile tubes. The cellular components have now been isolated. They can be stored at -80 °C.

Now that we’ve seen the basic procedure, let’s look at some applications.

A typical application is the isolation of multi-protein complexes in plant cells. In this example, complexes responsible for cyclic electron flow are being isolated from the thylakoid, the site of the light reaction in photosynthesis. This procedure uses discrete solutions of 14 to 45% sucrose. Centrifugation occurs over 100,000 x g for 14 h at 4 °C.

Because nucleic acids are denser than sucrose, isopycnic centrifugation cannot separate them from organelles nondestructively.

A different technique, known as “rate-zonal centrifugation” is used. It separates organelles based on their sedimentation rates, which depend not only on their densities, but also on their conformations. A continuous gradient is used to separate the components based on this property.

The procedural steps are similar to those for isopycnic cases. In this example, RNA-ribosome complexes are isolated using a continuous gradient of 5% to 20%, centrifuged at 230,000 x g. Centrifugation is interrupted after a few hours to prevent co-precipitation.

Nucleic acid strands can be separated from each other on the basis of density.

This is because strands rich in guanine and cytosine are denser than those rich in adenine and thiamine. In this case, the gradient cannot be made of sucrose, because sucrose is less dense than nucleic acids. Instead, cesium chloride gradients, typically from 1.65 to 1.75 g/mL are used, as they have sufficient density and a low viscosity.

Here we see plankton DNA being purified using a continuous cesium chloride gradient. Centrifugation occurs at over 1,000,000 x g for 18 h under vacuum.

You’ve just watched JoVE’s video on ultracentrifugation with a sucrose density gradient. You should now understand how a density gradient works, how to construct a step gradient, and how to load and operate an ultracentrifuge. Thanks for watching!

Tags

Cite This
JoVE Science Education Database. JoVE Science Education. Density Gradient Ultracentrifugation. JoVE, Cambridge, MA, (2023).

Vidéos Connexes