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Abstract

Metabolic models are reconstructed based on an organism's available genome

annotation and provide predictive tools to study metabolic processes at a systems-

level. Genome-scale metabolic models may include gaps as well as reactions that are

unverified experimentally. Reconstructed models of newly isolated microalgal species

will result in weaknesses due to these gaps, as there is usually sparse biochemical

evidence available for the metabolism of such isolates. The phenotype microarray

(PM) technology is an effective, high-throughput method that functionally determines

cellular metabolic activities in response to a wide array of entry metabolites. Combining

the high throughput phenotypic assays with metabolic modeling can allow existing

metabolic network models to be rapidly reconstructed or optimized by providing

biochemical evidence to support and expand genomic evidence. This work will show

the use of PM assays for the study of microalgae by using the green microalgal

model species Chlamydomonas reinhardtii as an example. Experimental evidence for

over 254 reactions obtained by PM was used in this study to expand and refine a

genome-scale C. reinhardtii metabolic network model, iRC1080, by approximately 25

percent. The protocol created here can be used as a basis for functionally profiling

the metabolism of other microalgae, including known microalgae mutants and new

isolates.

Introduction

Optimizing algal metabolism for enhanced and stable

production of targeted metabolites requires the development

of complex metabolic engineering strategies through

systems-level analyses of metabolic networks. Metabolic

network models can guide the rational designs for

the rapid development of optimization strategies1,2 ,3 ,4 .

Although approximately 160 microalgal species have been

sequenced5 , there are, to our knowledge, only 44 algal
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metabolic models available4,6 ,7 . Due to the difficulty

in obtaining high-throughput metabolic phenotypic data

for experimental validation of genomic information, the

reconstruction of high-quality network models lags behind the

rapid development of algal genome sequencing.

C. reinhardtii is an attractive model system for algal-

based studies. This species can grow photoautotrophically

or heterotrophically and has been widely used as a

model organism in basic and applied research. Its

genome sequence was published in 20078 , with genome-

scale metabolic models subsequently reconstructed for the

species9,10 ,11 . The genome-scale model for C. reinhardtii

(iRC1080) was reconstructed by Chang et al.10  based on

genomic and literature evidence (entailing ~250 sources). It

has 1,706 metabolites with 2,190 reactions10 ; however, the

completeness of the model could not be verified beyond the

available published experimental evidence at the time.

The phenotype microarrays (PMs) technology is a high-

throughput platform that can provide metabolic profiling

information for heterotrophic microorganisms as well as

tissue-culture cells. In particular, it can be used to address

the phenotype-to-genotype knowledge gap in microalgae,

as first reported for Chlamydomonas reinhardtii12  and

subsequently for a species of Chloroidium13  and Chlorella14 .

By studying cell responses to thousands of metabolites,

signaling molecules, osmolytes, and effector molecules,

the PM assays can provide functional metabolic profiling

and offer insights into the function, metabolism, and

environmental sensitivity15,16 ,17 . Specifically, PM assays

detect cells metabolite utilization in 96-well microplates

with different nutrients, metabolites, or osmolytes contained

in each well. Moreover, it is also possible to assay

bioactive molecules, such as antibiotics and hormones.

As determined by the intensity of color production by the

NADH reduction of a tetrazolium-based redox dye, the

metabolic utilization of substrates is evaluated in terms of cell

respiration15,16 ,17 . The experiments in 96-well microplates

can be monitored and determined automatically over time

with the phenotype microarray instrument (PMI) platform.

Twenty 96-well microplates are designed to represent the

common set metabolites to study cellular phenotypes to utilize

carbon, nitrogen, sulfur, and phosphorus sources, along with

different osmotic/ion and pH effects. The PM technology

has been successfully used for updating and upgrading

a number of existing genome-scale metabolic models for

microorganisms15,16 ,17 ,18 .

The protocol and data shown here are based on previously

published work by Chaiboonchoe et al.12  The presented

work details the use of the PM assay method to characterize

the metabolic phenotypes of microalgae and to expand an

existing algal metabolic model of C. reinhardtii as well as to

guide the reconstruction of new metabolic models.

Protocol

1. Phenotype Microarray Experiments

1. Obtain C. reinhardtii strain CC-503 from the

Chlamydomonas Resource Center at the University of

Minnesota, USA (https://www.chlamycollection.org).

2. Grow the cells in fresh Tris-Acetate-Phosphate (TAP)

media19  with final concentrations of 400 µg/mL timentin,

50 µg/mL ampicillin, and 100 µg/mL kanamycin (to inhibit

bacterial growth) under 400 micromol photons/m2s, at 25

°C, for two days to mid-log phase.

3. Spin down the culture at 2,000 x g for 10 min at 22 °C

and discard the supernatant without disturbing the pellet.
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4. Prepare fresh TAP media containing 0.1% tetrazolium

violet dye "D".
 

NOTE: Modify TAP media in this step to exclude some

nutrients depending on the metabolite category tested in

each plate (e.g., exclude ammonium chloride for nitrogen

source plates).

5. Resuspend the pellet in fresh TAP media prepared (from

step 1.2) to a final concentration of 1 x 106  cells/mL.

6. Use chemical compound array assay plates (carbon

sources, nitrogen sources, phosphorus and sulfur

sources plates, and the peptide nitrogen sources).

7. Inoculate a 100 µL aliquot of cell-containing media into

each well of the assay plates.
 

NOTE: Make sure to duplicate the assays.

8. Streak cells on yeast extract/peptone plates and perform

gram staining, as in Smith et al.20  before and after the

assay to monitor bacterial contamination.

9. Insert the chemical compound array assay plates into the

microplate reader system.

10. Incubate all the plates at 30 °C for up to 7 days and

program the microplate reader system to read the dye

color change every 15 min.
 

NOTE: As most microplate readers do not provide a

source of continuous light during incubation, the algae

should be able to carry out heterotrophic respiration.

2. Data Analysis

1. Export the raw kinetic data from the microplate reader as

CSV files, which will subsequently be used as input to

the Omnilog Phenotype Microarray (OPM) package in R.

Add the biological information as metadata (e.g., strain

designation, growth media, temperature, etc.).

1. Using the PM Kinetic data converter software; load

the D5E data files, and convert them to OKA files

using the following command lines in the PM kinetic

analysis software:
 

Load | Import (locate the folder of the OKA files) |

Populate Filters | Import | Add All Plates | Close.
 

Export | choose read data (Kinetic), choose

format (CSV) (Tabulate Header), and choose plates

(every plate (individual Files)) | Export data |

Save.

2. To carry out the Phenotype Microarray (PM) data

analysis, use the OPM software package21,22  that

runs within the R software environment. The

package, tutorial, and reference documentation are

available at: http://www.goeker.org/opm/. In

RStudio, a graphical user interface for R, install

the opm package and its dependencies using the

following commands:
 

source (http://www.goeker.org/opm/

install_opm.R)
 

library (opm)

3. Navigate to the directory that contains the CSV files

of the kinetic data and import the data using the

read_opm function:
 

x <- read_opm(".", convert="grp", include=list

("csv:"))

4. Aggregate and discretize the kinetic data using

curve-parameter estimation.
 

For (i in 1 :length(x)) {
 

x[[i]] <I do _aggre(x[[i]], boot = 0 L,

cores = 1 L, method ="splines", options =

set_spline_options("smooth.spline"))
 

x[[i]] <- do_disc(x[[i]], cutoff = FALSE)
 

https://www.jove.com
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}
 

#Collection of the metadata
 

metadata <- collect_template(".")
 

metadata$Strain <- c("BLANK","CC- 503")
 

for (I in 1 :length(x)) {x[[i]] <-

include_metadata(x[[i]], md = metadata, replace

= TRUE)}

5. Use the function xy_plot to map the respiration (or

growth) measurements (y-axis) as a function of time

(x-axis) for the assayed 96-well plates.
 

print (xy_plot(x[[ 1 ]], include ="Strain",

theor.max = FALSE))

6. Visualize the data as a heat map using the function

level_plot to allow for a quick comparative overview

of the kinetic data.
 

level_plot(x, main = list(), colors =

opm_opt("color.borders"), panel.headers =

metadata$Strain, cex = NULL, strip.fmt = list(),

striptext.fmt = list(), legend.sep =" ", space

="Lab", bias = 0.7 , num.colors = 200 L)

7. Extract important biological information, the curve

parameters, from the raw kinetic curves and include

the lag phase (λ), the growth rate (μ), the maximum

cell respiration (A), and the area under the curve

(AUC)21 . To identify positive metabolites, use the

A values of the negative control, which represents

the abiotic reactivity of the dye with the medium,

in addition to the blank of each microwell plate as

background subtraction values. The extract function

is used to obtain the A parameter.
 

opm_opt("curve.param")
 

param <- extract (x, as.labels = list("Strain")))

3. Identification of Reactions and Genes
Associated with New Metabolites

1. Search KEGG(Kyoto Encyclopedia of Genes and

Genomes) (http://www.genome.jp/kegg/) and MetaCyc

(http://metacyc.org/) to identify Enzyme Commission

numbers (ECs) for reactions using metabolites found

from chemical compound arrays23,2423,24 .

2. Use the identified EC numbers as a search

basis in multiple available algal annotation

resources such as Joint Genome Institute (JGI),

Phytozome (http://www.phytozome.net), and peer-

reviewed publications23,25 ,26 ,27 .

3. If a query returns no genetic evidence for a given

EC number, identify the relevant associated proteins in

other organisms, starting with species closest to the C.

reinhardtii, then carry out a profile-based search using

the NCBI PSI-BLAST server with default settings and use

non-redundant proteins (nr) in C. reinhardtii (taxid:3055)

to identify candidate genes associated to the reaction12 .

4. Manually curate PSI-BLAST hits with E values of <

0.05 for relevance to the searched EC number

through querying those BLAST hits through EMBL-EBI

Pfam (http://pfam.xfam.org/search), or InterPro (http://

www.ebi.ac.uk/interpro/) protein domain prediction

servers. Note that the latter two scans are critical steps to

ensure the identification of the correct enzymatic activity

for the protein.

4. Model Refinement and Evaluation

1. Use the latest COBRA Toolbox v.3.028  in

MATLAB29,30  platform to carry out the following steps for

model refinement. The COBRA Toolbox can be installed

https://www.jove.com
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by following the steps in: https://opencobra.github.io/

cobratoolbox/stable/installation.html . Alternatively, note

that the COBRA Toolbox is also implemented across

other open-source programming languages, such as

Python (COBRApy31 ) and is available at: https://

opencobra.github.io/cobrapy/ .

1. After installing the COBRA Toolbox v.3.0, open

MATLAB and execute the following command to

initialize the toolbox:
 

initCobraToolbox;

2. Add the identified reactions with their associated

genes to the metabolic model, such as iRC1080,

using the COBRA Toolbox functions addReaction

and changeGeneAssociation. Navigate to the

directory that contains the iRC1080 model,

downloaded from http://bigg.ucsd.edu/models/

iRC1080 and execute the following commands to

load the model, rename it, and add a new reaction

and its associated gene.
 

Load('iRC 1080 .mat')
 

modelNew = iRC 1080;
 

modelNew = addReaction(modelNew, 'D-ALA 2' ,

…
 

{'d-ala[c]' , 'atp[c]' , …
 

'D-aladata[c]' , 'adp[c]' , 'pi[c]' , …
 

'h[c]' },[- 2 - 1 1 1 1 1 ],false);
 

modelNEW =

changeGeneAssociation(modelNew, …
 

'D-ALA 2','au.g 14655 _t 1' );

3. In some cases when the metabolite is not

produced intracellularly but is taken up from the

medium, add transport reactions for the new

metabolites to the model. These transport reactions

represent passive diffusion of a metabolite from the

extracellular medium to the cytosol. In addition, add

a corresponding artificial exchange reaction using

the addExchangeRxn function to input or output the

metabolite into the extracellular medium.
 

modelNew = addReaction(modelNew, 'CYCPt' ,

…
 

{'cycp[e]','cycp[c]' },[- 1 1 ],true)'
 

modelNew = addExchangeRxn(modelNew,

'cycp[e]' ,- 1000 ,1000 );

4. Test the behavior of the new resultant model, e.g.,

iBD1106, by carrying out flux balance analysis

(FBA) using the function optimizeCbModel under

light and dark conditions for the maximization of

biomass as the objective function. For light growth,

set the lower and upper bounds of the PRISM

solar litho' light reactions to 646.07 (maximum rate).

For dark growth, set the bounds of all PRISM

light reactions to zero. Use the Biomass function

defined previously10  for growth under dark and

light conditions. The FBA solution will output two

vectors corresponding to reaction fluxes (solution.v)

and reduced cost (solution.w), as well as one

vector corresponding to metabolites' shadow prices

(solution.y).
 

%Simulate growth under light condition:
 

modelNew = changeRxnBounds(modelNew,{ …
 

% 'PRISM_solar_litho' , …
 

'PRISM_solar_exo' , …
 

'PRISM_incandescent_ 60 W' , …
 

'PRISM_fluorescent_cool_ 215 W' , …
 

'PRISM_metal_halide' , …
 

'PRISM_high_pressure_sodium' , …
 

'PRISM_growth_room' , …
 

'PRISM_white_LED' , …
 

https://www.jove.com
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'PRISM_red_LED_array_ 653 nm' , …
 

'PRISM_red_LED_ 674 nm' , …
 

'PRISM_fluorescent_warm_ 18 W' , …
 

'PRISM_design_growth' , …
 

}, 0, 'b' );
 

modelNew = changeObjective(modelNew,

'BIOMASS_Chlamy_mixo');
 

FBAsolutionNew =

optimizeCbModel(modelNew, 'max');

5. Repeat step 4.1.4 for iRC1080 to compare FBA

solutions obtained for iBD1106 with those obtained

for iRC1080.

6. There is a range of COBRA methods available

that can be used to compare models (e.g.,

flux variability analysis, gene deletion studies,

robustness analyses, flux split predictions, FBA,

sampling, etc.). Detailed tutorials can be found

at https://opencobra.github.io/cobratoolbox/stable/

tutorials/index.html. Here, an example is provided

where the iRC1080 model is compared with its

refined version, iBD1106, by obtaining the shadow

prices (sensitivity of the biomass objective function

to changes in system variable) of the metabolites

accounted for in each model.
 

Obtain the shadow prices for the metabolites:
 

shadowPrices = table(modelNew.mets, …
 

modelNew.metNames, FBAsolutionNew.y);

Representative Results

Phenotype Microarray screening of model alga

Chlamydomonas reinhardtii
 

The PM assays test the ability of the alga to utilize

various sources of carbon, nitrogen, sulfur, and phosphorus

in a minimal medium. In this methods description, we

demonstrated how PM assays were used to identify carbon

and nitrogen metabolism. Carbon and nitrogen utilization

kinetics were measured with a microplate reader. Data were

analyzed using PMI software. The summary kinetics of

selected PM assay plates (PM01 and PM03) are shown in

Figure 1. The "xy plots" display the respiration measurements

over time plotted for the 96-well plates' assays, where the y-

axis and x-axis represent the values of raw measurements

and time, respectively. The data was converted to a heat-map

pattern to comparatively analyze the assembly of the kinetic

data.

The pipeline of refining genome-scale metabolic network

using PM data (Figure 2) illustrates the integration of the high-

throughput PM assays with experimental evidence provided

by genomic searches can expand a metabolic network model.

To determine the reproducibility of the PM data obtained from

PM01 - 04 and PM10 plates, a linear regression was analyzed

to plot the data from two independent replicate experiments

against each another (Figure 3). Figure 3 shows that the

majority of the data were almost similar as they fall on the

45° line, with only a few outliers being present, and their

coefficient of determination R2  was 0.9. The consistency and

reproducibility of the experiments for the alga are verified by

this plot.

Identification of new metabolites
 

The PM assay identified 662 metabolites in seven

plates; PM01-PM04 and PM06-PM08, while Gas

Chromatography Time-Of-Flight (GC-TOF) had identified 77

metabolites32  (Figure 4). When comparing these two sets

with the 1068 metabolites accounted in the iRC1080, only

six metabolites overlapped between the three sets, and 149

overlapped between the iRC1080 and the PM. This result

https://www.jove.com
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demonstrates that the metabolic profiling platform can be a

significant source of new metabolic information.

Acetic acid was the only carbon source detected in

plate PM01 as a supporting carbon after subtracting

the background signal. This finding is consistent with

the literature33  and shows the specificity of the PM

assays. The PM assays revealed new sulfur, phosphorus,

and nitrogen sources that C. reinhardtii can utilize for

growth. The sulfur metabolites were sulfate, thiosulfate,

tetrathionate, and DL-Lipoamide. The phosphorus sources

were thiophosphate, dithiophosphate, D-3-phospho-glyceric

acid, and cysteamine-S-phosphate. The nitrogen source

metabolites were L-amino and D-amino acids, including

less common amino acids; L-homoserine, L-pyroglutamic,

methylamine, ethylamine, ethanolamine, and D,L-α-amino-

butyric, and 108 Di-peptides and five Tri-peptides (Table

1). All the 128 newly identified metabolites were searched

in KEGG and MetaCyc for their associated reactions, EC

numbers, and pathways.

The new 128 metabolites were associated with 49 unique

EC numbers. Of these, 15 ECs were linked to their

genomic evidence using five sources including; Phytozome

Version 10.0.234  JGI Version 435 , AUGUSTUS 5.0, and

5.210  annotations from Manichaikul et al.36  and KEGG13 .

Metabolites without genomic evidence were entered into

the Universal Protein Resource website (UniProt, http://

www.uniprot.org/)37,38  where their related sequences were

found in other organisms. Homologous sequences in C.

reinhardtii were identified by running Position-Specific

Iterated BLAST (PSI-BLAST, https://blast.ncbi.nlm.nih.gov/

Blast.cgi) from the NCBI website considering only sequences

that produced significant alignments (E-value <0.005).

Model refinement
 

Reactions associated with the new 128 metabolites,

along with their encoded genes, were added to the

iRC1080 model, expanding the network. The resulting

model iBD1106, accounts for 2,444 reactions, 1,959

metabolites, and 1,106 genes (Table 2). The new 254

added reactions were 20 amino acid oxidation reactions,

108 di-peptide hydrolysis reactions, five tripeptide hydrolysis

reactions, and 120 transport reactions, encoded by four

genes (Cre02.g096350.t1.3, au.g14655_t1, e_gwW.1.243.1,

Cre12.g486350.t1.3).

A total of 113 added new reactions account for the hydrolysis

of di-peptides and tri-peptides. The hydrolysis of di-peptides

and tri-peptides are associated with two genes, one for

di-peptides (Cre02.g078650.t1.3) and one for tri-peptides

(Cre16.g675350.t1.3).

Concerning sources of phosphorus, a reaction for hydrolysis

of cysteamine-S-phosphate into cysteamine and phosphate

was added associated with the gene JLM_162926.

The WoLF PSORT tool39  (http://www.genscript.com/psort/

wolf_psort.html) and results reported by Ghamsari et

al.35  were applied to obtain the specification of the cellular

compartments where the new reactions take place. By

analyzing protein sequences associated with the new

reactions, WoLF PSORT predicted cytosol as the cellular

compartment for the reactions.

A generated metabolic model may contain gaps when

the biochemical information is incomplete. In such cases,

gapFind, A COBRA command, is used. It lists root gaps

and allows the identification of new gaps introduction in the

new model. The metabolites that cannot be produced in a

metabolic model are referred to as root gaps40,41 . Analyzing

the root gap indicated that both iRC1080 and iBD1106

https://www.jove.com
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models contain the same 91 gaps. This shows that adding

the new metabolites and their associated reactions did not

introduce any additional root gaps. It should be noted that the

phenotyping method used in this protocol does not close root

gaps, because the original root gap metabolites lack transport

or production mechanisms, which were not addressed in the

phenotyping assays. Flux balance analysis was carried out

to test the metabolic behavior of iBD1106 under light and

dark conditions; (no acetate) and (with acetate), respectively.

The algorithm maximizes the biomass precursor reactions

for an objective function (biomass growth). To evaluate the

involvement of each metabolite to the set objective function,

"shadow prices" for all metabolites were calculated. The

change in the objective function concerning flux changes of

the metabolite defines the shadow price of a metabolite30,42 .

The indication of whether a metabolite is in "excess" or is

"limiting" the objective function can be determined by shadow

price analysis, e.g., biomass production. Negative or positive

shadow price values reveal metabolites that, upon addition,

will decrease or increase the objective function. Zero values

of shadow prices reveal metabolites that will not affect the

objective function. The comparison of shadow prices between

iBD1106 and iRC1080 in Figure 5 shows that, for most

metabolites, a significant change is not observed; though,

differences are found in 105 and 70 cases under light and dark

growth conditions, respectively. Table 4 includes examples

of such metabolites.

https://www.jove.com
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Figure 1: Phenotypic microarray profiling of C. reinhardtii. Respiration XY-plots and level plots of the PM01 (Carbon

sources; A, C) and PM03 (Nitrogen sources; B, D) assay plates are shown. The figure is an 8x12 array where each cell

represents a well-plate and, thus, a given metabolite or growth environment. Within each cell or well representation, curves

represent dye conversion by reduction (y-axis) as a function of time (x-axis). PM respiration curves from the CC-503 and

blank wells are shown in each cell and are indicated by color (teal color represents blank wells and purple color represents

CC-503). The level-plot represents each respiration curve as a thin horizontal line changing color (or remaining unchanged)

over time. Heatmap color changes are from light yellow (little to no respiration has taken place) to dark orange or brown

https://www.jove.com
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(significant respiration has taken place). Metabolites utilized by C. reinhardtii (CC-503) and the blank plates are shown. This

figure is from a previously published work by Chaiboonchoe et al.12  Please click here to view a larger version of this figure.

 

Figure 2: Genome-scale metabolic network refinement pipeline using PM data. After a new compound tests positive

in a PM assay, its Enzyme Commission number (EC), reaction, and pathway are identified from available databases, e.g.,

KEGG and MetaCyc. Genomic evidence is then extracted from genomic and annotation resources when available and

constitutes a link between genotype and phenotype. When direct genomic evidence is unavailable, the protein sequence is

identified from the EC numbers, and genetic evidence is identified via PSI-Blast. The reconstructed metabolic network is then

refined based on newly identified compounds, but only after a quality control step that entails querying the protein domains

using relevant databases. This figure has been modified from previously published work by Chaiboonchoe et al.12  Please

click here to view a larger version of this figure.
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Figure 3: Reproducibility of PM tests. The PMI values were collected over a 168 hours period, and the maximum PMI

values were plotted for two replicate studies. Each axis represents the maximum PMI values for each study (the x-axis being

one replicate study and the y-axis another). Reproduced values are equidistant from each axis. Each point represents a

single maximum value. The linear regression was performed by a spreadsheet software, and the resulting coefficient of

determination (R2 ) is shown. This figure has been modified from previously published work by Chaiboonchoe et al.12  Please

click here to view a larger version of this figure.

https://www.jove.com
https://www.jove.com/
https://www.jove.com/files/ftp_upload/61913/61913fig03large.jpg
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Figure 4: Venn diagram of metabolites. The Venn diagram enumerates metabolites identified by PM plates, the iRC1080

metabolic model, and Gas Chromatography Time of Flight (GC-TOF) experiments. Each circle indicates the total number of

metabolites that exist in each respective method of study. At the same time, the overlapping regions represent the number of

metabolites shared between those methods. The iRC1080 metabolic model contains a total of 1,068 unique metabolites. The

GC-TOF identified a total of 77 metabolites32 , while there are a total of 662 metabolites identified using the PM plates. This

figure is from previously published work by Chaiboonchoe et al. 12  Please click here to view a larger version of this figure.

https://www.jove.com
https://www.jove.com/
https://www.jove.com/files/ftp_upload/61913/61913fig04large.jpg
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Figure 5: Shadow prices of metabolites in iRC1080 and iBD1106 under different conditions for biomass

maximization. Each circle on the "radar plots" corresponds to a shadow price value, while each line extending from the

center of a plot indicates a metabolite. (A) Shadow prices and metabolic behaviors of iRC1080 and iBD1106 under a light

growth condition; (B), different metabolic behaviors of iRC1080 and iBD1106 under a dark growth condition. This figure is

from previously published work by Chaiboonchoe et al. 12  Please click here to view a larger version of this figure.

https://www.jove.com
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Biolog Chemical EC* Gene Annotation PSI-BLAST

Cysteamine-S-Phosphate 3.1.3.1 JLM_1629261,2 ,3 ,4

Tetrathionate 1.8.2.2 insignificant E-value

1.8.5.2 insignificant E-value

D-Alanine 1.4.1.1 XP_001700222.1

1.5.1.22 failed manual QC

2.1.2.7 insignificant E-value

1.4.3.3 Cre02.g096350.t1.35

2.3.2.10 insignificant E-value

2.3.2.14 insignificant E-value

2.3.2.16 insignificant E-value

2.3.2.17 insignificant E-value

2.3.2.18 insignificant E-value

2.6.1.21 failed manual QC

3.4.13.22 XP_001698572.1,

XP_001693532.1,

XP_001701890.1,

XP_001700930.1

3.4.16.4 Chlre2_kg.scaffold_

140000391,2 ,3

3.4.17.8 failed manual QC

3.4.17.13 insignificant E-value

3.4.17.14 insignificant E-value

4.5.1.2 insignificant E-value

6.1.1.13 failed manual QC

6.1.2.1 failed manual QC

6.3.2.4 au.g14655_t11,2 ,3

6.3.2.10 failed manual QC

https://www.jove.com
https://www.jove.com/
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6.3.2.16 insignificant E-value

6.3.2.35 insignificant E-value

D-Asparagine 1.4.5.1 insignificant E-value

1.4.3.3 Cre02.g096350.t1.35

3.1.1.96 insignificant E-value

2.3.1.36 insignificant E-value

1.4.99.1 XP_001692123.1

3.5.1.77 e_gwW.1.243.11,2

3.5.1.81 insignificant E-value

5.1.1.10 failed manual QC

D-Aspartic Acid 6.3.1.12 insignificant E-value

1.4.3.3 Cre02.g096350.t1.35

D-Glutamic Acid 1.4.3.7 insignificant E-value

1.4.3.3 insignificant E-value

D-Lysine 5.4.3.4 insignificant E-value

1.4.3.3 Cre02.g096350.t1.35

6.3.2.37 failed manual QC

D-Serine 2.7.11.8 insignificant E-value

2.7.11.17 Cre12.g486350.t1.31,2 ,3 ,4

3.4.21.78 failed manual QC

3.4.21.104 failed manual QC

4.3.1.18 g6244.t14 failed manual QC

6.3.2.35 insignificant E-value

6.3.3.5 insignificant E-value

1.4.3.3 Cre02.g096350.t1.35

D-Valine 1.21.3.1 failed manual QC

6.3.2.26 failed manual QC

https://www.jove.com
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1.4.3.3 Cre02.g096350.t1.35

L-Pyroglutamic Acid

Thiophosphate

Dithiophosphate

Ethylamine 6.3.1.6

D,L-a-Amino-Butyric Acid 2.1.1.49 insignificant E-value

1.4.3.3 Cre02.g096350.t1.35

Di-peptide 3.4.13.18 Cre02.g078650.t1.31

Tri-peptide 3.4.11.4 Cre16.g675350.t1.31

Table 1: List of identified positive substrate utilization metabolites (C, P, S, N) not present in the iRC1080 metabolic

model.  *Reaction was not included if no gene was identified.  1Phytozome version 10.0.2 (http://phytozome.jgi.doe.gov/pz/

portal.html#!info?alias=Org_Creinhardtii).   2JGI version 4 35 .  3Augustus version 510 .  4KEGG (http://www.genome.jp/kegg/

kegg1.html).  5JGI version 3.136 .  This table is from previously published work by Chaiboonchoe et al. 12

Model Reactions Metabolites Genes

iRC1080 2,191 1,706 1,086

iBD1106 2,445 1,959 1,106

Table 2: Contents of iRC1080 and iBD1106.  This table is from previously published work by Chaiboonchoe et al. 12

Category or Class of reactions Number of reactions

Amino Acids 20

Dipeptides 108

Tripeptides 5

Transport reaction 120

Table 3: Summary of new reactions in iBD1106. This table is from previously published work by Chaiboonchoe et al. 12

https://www.jove.com
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Growth condition Metabolite Name iRC1080 iBD1106

4r5au 4-(1-D-Ribitylamino)-5-aminouracil 0 0.168

5aprbu 5-Amino-6-(5'-

phosphoribitylamino)uracil

-0.009 0.158

Light pa1819Z18111Z 1-(9Z)-octadecenoyl,2-(11Z)-

octadecenoyl-sn-glycerol3-phosphate

-0.009 -0.65

Dark 4abut 4-aminobutanoate 0.18 -0.05

Table 4: Example of significant shadow prices for iRC1080 and iBD1106. This table is from previously published work by

Chaiboonchoe et al. 12

Discussion

Metabolic phenotyping of the green microalga, C. reinhardtii,

was described here using high throughput PM assay plates

and an unmodified PMI. The assays were utilized for a total of

190 carbon sources (PM01 and PM02), 95 nitrogen sources

(PM03), 59 phosphorus sources, and 35 sulfur sources

(PM04), along with peptide nitrogen sources (PM06-08).

Positive respiration was observed for 148 nutrients (one

positive assay for C-source utilization, four positive assays for

each the S-source and P-source utilizations, and 139 positive

assays for N-source utilization). The substrates or nutrients

(carbon, nitrogen, phosphorus, or sulfur) component of the

media should not be added to the defined medium when

applied to the relevant PM microplates that test for each of

those sources.

The method shown here is effective for characterizing

metabolic microalgae phenotypes that can be used to extend

existing metabolic network models or direct the reconstruction

of new models. Further, as the nutritional requirements of

most microalgae are not known, this platform can be used to

define these rapidly. Nelson et al.43  had successfully applied

these methods to identify new compounds that support

the growth of the microalgae Chloroidium sp. UTEX 3007

and used the obtained information to define the species

entry metabolites, which, unlike Chlamydomonas, include 40

different carbon sources.

One major limitation of the PM for profiling microalgae

is that the PMI has no illumination in the incubation

chamber, and the microalgae need to be able to carry

out heterotrophic metabolism. The absence of light could

affect the interpretation of models that incorporate light to

calculate metabolic fluxes. Gene pairs with coordinating

functions have co-evolved to constitute metabolic network

hubs, and the distinction between photosynthetic and

non-photosynthetic network hubs can be made44 . In

general, photosynthetic network hubs (i.e., highly-connected

nodes in the model) would be left out of heterotrophic

models. For practical purposes, modeling heterotrophism

in mixotrophic species should omit reactions known to

be driven by light and account for the energy balance

differences between conditions. Thus, modeling light-

dependent and light-independent metabolism is standard

practice in Chlamydomonas metabolic modeling6,45 .

https://www.jove.com
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Some green microalgae, like Trebouxiophytes, are known

to assimilate a variety of carbon molecules for growth, and

this is thought to have arisen from their long evolutionary

history as members of lichens46 . While chlorophytes like

Chlamydomonas can use acetate for growth, the brown

marine microalga Tisochrysis lutea, known for its potential

to commercially produce very-long-chain polyunsaturated

fatty acids (VLC-PUFAs), cannot use acetate but can

use glycerol for growth47 . Biomass concentration of more

than 100 g l−1  dry cell weight has been achieved with

Chlorella with optimized addition of organic carbon sources

in a fed-batch mode48 . Further, the addition of sugar to

Chlorellavulgaris can elevate its sequestration of CO2, thus

providing an additive benefit during photosynthetic growth49 .

Most heterotrophic microalgae can also grow mixotrophically,

but the Chlorophyte Chromochloris zofingiensis has been

shown to shut off photosynthesis upon the addition of

sugar50 .

Diatoms, belonging to the division Bacillariophyta, are a

major group of phytoplankton. Although most of the diatoms

can only grow photoautotrophically, some of them can

be cultivated mixotrophically or heterotrophically51 . For

example, glycerol was found to support growth in the light in

the absence of CO2 in some diatoms, including the model

species Phaeodactylum tricornutum52 . Also, some benthic

diatoms like Nitzschia linearis can grow on carbohydrates in

the dark53 . It is likely to extend the PM assays to diatoms

and other algal groups by supplementing suitable organic

carbon sources to enable the cells to grow heterotrophically,

and a mixotrophy strategy can also be potentially used for

the obligate autotrophic microalgae providing a minimally

required light supply.

To assess the reproducibility of the data, it is highly

recommended to carry out duplicate assays for all plates. An

assay may be considered positive only if, after subtraction

from the negative control and the respective blank wells, the

absorbance (PMI value) is positive. This description, in the

presence of the tested compound, is a reflection of the dye's

abiotic reaction with the medium.
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