
Copyright © 2021  JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com May 2021 • 171 •  e61943 • Page 1 of 22

Real-Time Proxy-Control of Re-Parameterized Peripheral
Signals using a Close-Loop Interface
Vilelmini  Kalampratsidou1,2,  Steven  Kemper3,  Elizabeth B.  Torres1,2,4,5,6

1 Center for Cognitive Science, Rutgers University 2 Department of Computer Science, Rutgers University 3 Music Department, Mason Gross School of the

Arts, Rutgers University 4 Psychology Department, Rutgers University 5 Sensory Motor Integration Lab, Rutgers University 6 Computational Biomedicine
Imaging and Modelling Center, Rutgers University

Corresponding Authors

Vilelmini Kalampratsidou

vilelmini.kalabratsidou@gmail.com

Elizabeth B. Torres

ebtorres@psych.rutgers.edu

Citation

Kalampratsidou, V., Kemper, S.,

Torres, E.B. Real-Time Proxy-Control

of Re-Parameterized Peripheral Signals

using a Close-Loop Interface. J. Vis.

Exp. (171), e61943, doi:10.3791/61943

(2021).

Date Published

May 8, 2021

DOI

10.3791/61943

URL

jove.com/video/61943

Abstract

The fields that develop methods for sensory substitution and sensory augmentation

have aimed to control external goals using signals from the central nervous systems

(CNS). Less frequent however, are protocols that update external signals self-

generated by interactive bodies in motion. There is a paucity of methods that combine

the body-heart-brain biorhythms of one moving agent to steer those of another moving

agent during dyadic exchange. Part of the challenge to accomplish such a feat has

been the complexity of the setup using multimodal bio-signals with different physical

units, disparate time scales and variable sampling frequencies.

In recent years, the advent of wearable bio-sensors that can non-invasively harness

multiple signals in tandem, has opened the possibility to re-parameterize and update

the peripheral signals of interacting dyads, in addition to improving brain- and/

or body-machine interfaces. Here we present a co-adaptive interface that updates

efferent somatic-motor output (including kinematics and heart rate) using biosensors;

parameterizes the stochastic bio-signals, sonifies this output, and feeds it back in

re-parameterized form as visuo/audio-kinesthetic reafferent input. We illustrate the

methods using two types of interactions, one involving two humans and another

involving a human and its avatar interacting in near real time. We discuss the new

methods in the context of possible new ways to measure the influences of external

input on internal somatic-sensory-motor control.

Introduction

The Natural Close-Loop Controller
 

Sensory-motor information flows continuously between the

brain and the body to produce well-organized, coordinated

behaviors. Such behaviors can be studied while focusing on

the person's actions alone, as in a monologue style (Figure

1A), or during complex dynamic actions shared between two
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agents in a dyad, as in a dialogue style (Figure 1B). Yet, a

third option is to assess such complex interactions through

a proxy controller, within the context of a human-computer

close-loop interface (Figure 1C). Such interface can track the

moment-by-moment movements' fluctuations contributed by

each agent in the dyad, and by the type of cohesiveness that

self-emerges from their synchronous interactions, helping

steer the dyad's rhythms in desirable ways.

 

Figure 1: Different forms of control. (A) Self brain-controlled interfaces rely on the close-loop relations between the

person's brain and the person's own body, which can self-regulate and self-interact in "monologue" style. This mode

attempts the control of self-generated motions, or it may also aim to control external devices. (B) "Dialogue" style control

is introduced for two dancers that interact with each other and through physical entrainment and turn-taking to attain

control over each other's motions. (C) "Third party" dialogue control of the dyad is introduced as mediated by a computer

interface that harnesses in tandem the bio-signals from both dancers, parameterizes it and feeds it back to the dancers in

re-parameterized form using audio and/or vision as forms of sensory guidance. The re-parameterization in the examples

presented here were attained using audio or visual feedback, enhanced by the real time kinesthetic motor output of one of

the dancers to influence the other; or of both dancers, taking turns in some alternating pattern. Please click here to view a

larger version of this figure.

The overall goal of this method is to show that it is possible

to harness, parameterize and re-parameterize the moment-

by-moment fluctuations in biorhythmic activities of bodies in

motion, as two agents engage in dyadic exchange that may

involve two humans, or a human and his/her self-moving

avatar.

Investigations on how the brain may control actions and

predict their sensory consequences have generated many

lines of theoretical enquiries in the past1,2 ,3  and produced

various models of neuromotor control4,5 ,6 ,7 ,8 . One line

of research in this multi-disciplinary field has involved the
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development of close-loop brain-machine or brain-computer

interfaces. These types of setups offer ways to harness and

adapt the CNS signals to control an external device, such as a

robotic arm9,10 ,11 , an exoskeleton12 , a cursor on a computer

screen13  (among others). All these external devices share

the property that they do not have own intelligence. Instead,

the brain trying to control them does have, and part of

the problem that the brain faces is to learn how to predict

the consequences of the motions that it generates in these

devices (e.g., the cursor's motions, the robotic arm's motions,

etc.) while generating other supportive motions that contribute

to the overall sensory motor feedback in the form of

kinesthetic reafference. Often, the overarching aim of these

interfaces has been to help the person behind that brain

bypass an injury or disorder, to regain the transformation of

his/her intentional thoughts into volitionally controlled physical

acts of the external device. Less common however has

been the development of interfaces that attempt to steer the

movements of bodies in motion.

Much of the original research on brain-machine interfaces

focus on the control of the central nervous system

(CNS) over body parts that can accomplish goal-directed

actions9,14 ,15 ,16 ,17 . There are, however, other situations

whereby using the signals derived from activities of the

peripheral nervous systems (PNS), including those of the

autonomic nervous systems (ANS), is informative enough to

influence and steer the signals of external agents, inclusive

of another human or avatar, or even interacting humans (as

in Figure 1C). Unlike with a robotic arm or cursor, the other

agent in this case, has intelligence driven by a brain (in the

case of the avatar that has been endowed with the person's

motions, or of another agent, in the case of an interacting

human dyad).

A setup that creates an environment of a co-adaptive close-

loop interface with dyadic exchange may be of use to

intervene in disorders of the nervous systems whereby the

brain cannot volitionally control one's own body in motion at

will, despite not having physically severed the bridge between

the CNS and the PNS. This may be the case owing to noisy

peripheral signals whereby the feedback loops to aid the

brain continuously monitor and adjust its own self-generated

biorhythms may have been disrupted. This scenario arises in

patients with Parkinson's disease18,19 , or in participants with

autism spectrum disorders with excess noise in their motor

output. Indeed, in both cases, we have quantified high levels

of noise-to-signal ratio in the returning kinesthetic signals

derived from the speed of their intended movements20,21 ,22

and from the heart23 . In such cases, trying to master the

brain-control of external signals, while also trying to control

the body in motion, may result in a self-reactive signal from

the re-entrant (re-afferent) stream of information that the

brain receives from the continuous (efferent) motor stream

at the periphery. Indeed, the moment-by-moment fluctuations

present in such self-generated efferent motor stream contain

important information useful to aid the prediction of the

sensory consequences of purposeful actions24 . When this

feedback is corrupted by noise, it becomes difficult to

predictably update the control signals and bridge intentional

plans with physical acts.

If we were to extend such feedback loop to another agent

and control the person and agent's interactions through a

third party (Figure 1C), we may have a chance to steer each

other's performances in near real time. This would provide us

with the proof of concept that we would need to extend the

notion of co-adaptive brain-body or brain-machine interfaces

https://www.jove.com
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to treat disorders of the nervous systems that result in poor

realization of physical volition from mental intent.

Purposeful actions have consequences, which are precisely

characterized by motor stochastic signatures that are context-

dependent and enable inference of levels of mental intent

with high certainty25,26 . Thus, an advantage of a new

method that leverages dyadic exchange over prior person-

centered approaches to the brain machine or brain computer

interfaces, is that we can augment the control signals to

include the bodily and heart biorhythms that transpire largely

beneath the person's awareness, under different levels of

intent. In this way, we dampen reactive interference that

conscious control tends to evoke in the process of adapting

brain-cursor control17 . We can add more certainty to the

predictive process by parameterizing the various signals

that we can access. Along those lines, prior work exists

using brain and bodily signals in tandem27,28 ,29 ; but work

involving dyadic interactions captured by brain-bodily signals

remains scarce. Further, the extant literature has yet to

delineate the distinction between deliberate segments of

the action performed under full awareness and transitional

motions that spontaneously occur as the consequence of the

deliberate ones30,31 . Here we make that distinction in the

context of dyadic exchange, and offer new ways to study

this dichotomy32 , while providing examples of choreographed

(deliberate) vs. improvised (spontaneous) motions in the

dance space.

Because of the transduction and transmission delays in the

sensory-motor integration and transformation processes33 ,

it is necessary to have such predictive code in place, to

learn to anticipate upcoming sensory input with high certainty.

To that end, it is important to be able to characterize the

evolution of the noise-to-signal ratio derived from signals

in the continuously updating kinesthetic reafferent stream.

We then need protocols in place to systematically measure

change in motor variability. Variability is inherently present in

the moment-by-moment fluctuations of the outgoing efferent

motor stream34 . Since these signals are non-stationary

and sensitive to contextual variations35,36 , it is possible

to parameterize changes that occur with alterations of the

tasks' context. To minimize interference from reactive signals

that emerge from conscious CNS control, and to evoke

quantifiable changes in the efferent PNS motor stream, we

introduce here a proxy close-loop interface that indirectly

alters the sensory feedback, by recruiting the peripheral

signal that is changing largely beneath the person's self-

awareness. We then show ways to systematically measure

the change that ensues the sensory manipulations, using

stochastic analyses amenable to visualize the process that

the proxy close-loop interface indirectly evokes in both

agents.

Introducing a Proxy Close-Loop Controller
 

The sensory-motor variability present in the peripheral

signals constitute a rich source of information to guide

the performance of the nervous systems while learning,

adaptation and generalization take place across different

contexts37 . These signals partly emerge as a byproduct of the

CNS trying to volitionally control actions but are not the direct

goal of the controller. As the person naturally interacts with

others, the peripheral signals can be harnessed, standardized

and re-parameterized; meaning that their variations can be

parameterized and systematically shifted, as one alters the

efferent motor stream that continuously re-enters the system

as kinesthetic reafference. In such settings, we can visualize

the stochastic shifts, capturing with high precision a rich signal

https://www.jove.com
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that is otherwise lost to the types of grand averaging that more

traditional techniques perform.

To achieve the characterization of change under the new

statistical platform, we here introduce protocols, standardized

data types and analytics that permit the integration of external

sensory input (auditory and visual) with internally self-

generated motor signals, while the person naturally interacts

with another person, or with an avatar version of the person.

In this sense, because we are aiming at controlling the

peripheral signals (rather than modifying the CNS signals

to directly control the external device or media), we coin

this a proxy close-loop interface (Figure 2). We aim at

characterizing the changes in the stochastic signals of the

PNS, as they impact those in the CNS.

 

Figure 2: Proxy control of a dyadic interaction using close-loop multi-modal interface. (A) Indirect control of two

dancers (dancing salsa) via a computer co-adaptive interface vs. (B) an interactive artificial person-avatar dyad controlled

by harnessing the peripheral nervous systems signals and re-parameterizing it as sounds and/or as visual input. (C) The

concept of sonification using a new standardized data type (the micro-movement spikes, MMS) derived from the moment-

by-moment fluctuations in biorhythmic signals amplitude/timing converted to vibrations and then to sound. From Physics,

we borrow the notions of compressions and rarefactions produced by a tuning fork outputting soundwave as measurable

https://www.jove.com
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vibrations. Schematics of soundwaves represented as pressure modulated over time in parallel to spike concentrations for

sonification. Example of a physical signal to undergo the proposed pipeline from MMS to vibrations and sonification. We

use the heart rate signal as input to the interface. This takes fluctuations in the signal's amplitude aligned to the movement

onset every 4 seconds of motion and builds MMS trains representing the vibrations. The spike trains from the MMS are

standardized from [0,1]. The color of the spikes as per the color bar, represents the intensity of the signal. We then sonify

these vibrations using Max. This sonified signal can be used to play back in A, or to alter in B the interactions with the avatar.

Further, in B it is possible to embed the sound in the environment and use the body position to play the sound back at a

region of interest (RoI), or to modulate the audio features as a function of distance to the RoI, speed or acceleration of a

body part anchored to another body part, when passing by the RoI. Please click here to view a larger version of this figure.

The PNS signals can be harnessed non-invasively with

wearable sensing technologies that co-register multi-modal

efferent streams from different functional layers of the

nervous systems, ranging from autonomic to voluntary32 .

We can then measure in near real time the changes in

such streams and select those whose changes enhance

the signal-to-noise ratio. This efferent motor signal can then

be augmented with other forms of sensory guidance (e.g.,

auditory, visual, etc.) Because the PNS signals scape full

awareness, they are easier to manipulate without much

resistance 38 . As such, we use them to help steer the person's

performance in ways that may be less stressful to the human

system.

Building the Interface
 

We present the design of the proxy control mediated by a

close-loop co-adaptive multimodal interface. This interface

steers the real-time multisensory feedback. Figure 3 displays

the general design.

The close-loop interface is characterized by 5 main

steps. The 1st step is the multi-modal data collection

from multiple wearable instruments. The 2nd step is the

synchronization of the multi-modal streams through

the platform of LabStreamingLayer (LSL, https://github.com/

sccn/labstreaminglayer) developed by the MoBI group 39 .

The 3rd step is the streaming of the LSL data structure to a

Python, MATLAB or other programming language interface

to integrate the signals and to empirically parametrize

physiological features (relevant to our experimental setup)

in real-time. The 4th step is to re-parameterize the selected

features extracted from the continuous stream of the bodily

signal studied and augment it using a sensory modality

of choice (e.g., visual, auditory, kinesthetic, etc.) to play it

back in the form of sounds or visuals, to augment, substitute

or enhance the sensory modality that is problematic in the

person's nervous system. Finally, the 5th step is to re-assess

the stochastic signatures of the signals generated by the

system in real time, to select which sensory modality brings

the stochastic shifts of the bodily fluctuations to a regime

of high certainty (noise minimization) in the prediction of

the sensory consequences of the impending action. This

loop is played continuously throughout the duration of the

experiment with the focus on the selected signal, while storing

the full performance for subsequent analyses (as depicted in

the schematics of Figure 3 and see40,41 ,42 ,43 ,44 ,45 ,46 ,47

for an example of a posteriori analyses).
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Figure 3: The architecture of the multi-modal peripherally driven close-loop interface concept. Various bodily signals

are collected -kinematic data, heart and brain activity (step 1). LSL is used to synchronously co-register and stream the data

coming from various equipment to the interface (step 2). Python/MATLAB/C# code is used to continuously parameterize the

fluctuations in the signals using a standardized data type and common scale that enables selecting the source of sensory

guidance most adequate to dampen the system's uncertainty (step 3). This real-time enhancement of signal transmission

through selected channel(s) then allows re-parameterization of the re-entrant sensory signal to integrate in the continuous

motor stream and enhance the lost or corrupted input stream (sensory substitution step 4). Continuous re-assessment closes

the loop (step 5) and we save all data for additional future analyses. Please click here to view a larger version of this figure.

The following sections present the generic protocol of how to

build a close-loop interface (as described in Figure 3) and

describe representative results of two experimental interfaces

(elaborately presented in Supplementary Material) involving

physical dyadic interaction between two dancers (real close-

loop system) and virtual dyadic interaction between a person

and an avatar (artificial close-loop system).

Protocol

Study was approved by the Rutgers Institutional Study Board

(IRB) in compliance with the declaration of Helsinki.

1. Participants

1. Define the population to be studied and invite them

to participate in the study. The present interface can

be used in various populations. This protocol and the

examples used here to provide proof of concept are not

limited to a specific group.

2. Obtain written informed consent of the IRB approved

protocol in compliance with the Declaration of Helsinki.

3. Ask the participant or guardian to sign the form before

the beginning of the experiment.

https://www.jove.com
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2. Setup of the Close-Loop Interface

1. Setup of kinematic equipment-PNS

1. Help the participant to carefully wear the LED-

based motion-capture costume (body and head,

shown in Figure 3, step 1 and 5) accompanying the

motion-capture system used. The LED markers of

the costume will be tracked by the cameras of the

system to estimate the location of the moving body

in space.

2. Connect the wireless LED controller (also known as

LED driver unit) of the system with the LED cables of

the costume by plugging it into the proper port. Turn

the device on and set it on the streaming mode.

3. Turn on the server of the motion-capture system.

4. Open a web-browser, visit the server address,

and sign-in (sign-in info must be provided by the

company upon purchase of the product).

5. Calibrate the system as needed (for example,

calibrate the system if this is the first time to use the

equipment, otherwise move to step 2.1.17).

6. Open the calibration tool of the motion-capture

system and select Calibration Wizard.

7. Make sure that the entry of the server number in

the text-field on the left-upper side of the interface is

correct and click Continue.

8. Connect the wand to the first port of the LED

controller and turn ON the controller and click

Continue. Once the wand is connected, its LED

markers will be turned on and will appear on the

display, in the camera views.

9. Place the wand in the center of the camera view-

field, confirm that it can be recorded by the cameras,

and click Continue.

10. Move the wand throughout the space by keeping it

vertical and drawing cylinders. Make sure that the

motion is captured by at least 3 cameras every time

and is registered on the view field of each camera

making it green. Do this for all cameras.

11. Once the view-field of each camera has been fully

registered (it is all green), click Continue and wait

for calibration computations to be executed.
 

NOTE: Once calibration is completed, the camera

location along with the LED markers will be seen

on the display, as they are physically placed in the

room. At this point, the user may resume calibration

because it is done, or continue aligning the system.

12. Hold the wand vertically and place the side with the

LED closer to the end of the wand on the ground,

where the origin of the 3D space must be set (point

(0,0,0)).

13. Hold the wand stable until registered. Once

registered, the screen flashes green. A point

indicating the origin of the reference frame on the

space will appear on the interface and the next

alignment axis, x-axis, will be highlighted green.

14. Move the wand, maintaining the same orientation

(vertically), at the point of the x-axis and hold it stable

until registered.

15. Repeat for the z-axis. Once the point of the z-axis is

registered, the calibration is complete.

16. Click Finish to exit calibration.

https://www.jove.com
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17. Open the interface of the motion-capture system and

click Connect to start streaming the data from the

LED markers. Once the connection is established,

the position of the markers will be displayed on the

virtual world of the interface.

18. Create the virtual skeleton (automatically estimate

the bone positions of the body from the position data

collected from the LED markers of the costume, as

shown Figure 8 step2).

19. Right click on Skeletons on the right side of the

window and select New skeleton.

20. Choose Marker Mapping and then select the proper

file (provided by the company based on the interface

version that is used). Then, click OK.

21. Ask participant to stay stable on the T-pose (straight

up posture with arms open on the sides).

22. Right click on skeleton and select Generate

skeleton without training.

23. If all steps are correctly performed the skeleton

will be generated. Ask participant to move and

check how accurately the virtual skeleton follows

participant's movements.

24. To stream the skeleton data to LSL, select Settings

and Options from the main menu.

25. Open Owl emulator and click "start" Live

streaming.

2. Setup of EEG equipment - CNS

1. Help the same participant to wear the EEG head-

cap.

2. Place the gel electrodes (the traditional gel-based

electrodes used with the EEG head-cap) on the

head-cap and 2 sticky electrodes (electrodes that

work like stickers) on the back side of the right ear

for the CMS and DRL sensors.

3. Fill electrodes with high-conductive gel, as needed,

to improve conductivity between the sensor and the

scalp.

4. Connect the electrode-cables on the gel-trodes and

the two sticky electrodes.

5. Stick the wireless monitor on the back of the head-

cap and plug in the electrode cables.

6. Turn on the monitor.

7. Open the interface of the EEG system.

8. Select Use Wi-Fi device and click Scan for

devices.

9. Select NE Wi-Fi and Use this device.

10. Click on the head icon, select a protocol that allows

the recording of all 32 sensors, and click Load.

11. Make sure that the streamed data of each channel

are displayed on the interface.

3. Setup of ECG equipment- ANS

1. Follow the exact steps presented in 2.2 but use

channel O1 to connect on the heart rate (HR)

extension.

2. Use a sticky electrode to stick the other end of the

extension right below the left ribcage.

4. Preparation of LSL for synchronized recording and

streaming of kinematic data.

1. Run the LSL application for the motion-capture

system by double-clicking on the corresponding

icon. Locate the application on the following path of

https://www.jove.com
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the LSL folder, LSL\labstreaminglayer-master\Apps

\PhaseSpace.

2. On the interface, set the proper server address.

3. Then, select File and Load configuration.

4. Select the proper configuration file (it must be

provided by the company based on the product

version that is used)

5. Click Link. If no mistakes are made, then no error

message will be displayed.

5. Prepare LSL for synchronized recording and streaming

of EEG and ECG data. No extra steps are required for

this equipment.

6. Setup of LSL

1. Run LabRecorder application by double clicking on

the file located in the LSL\labstreaminglayer-master

\Apps\LabRecorder path of the LSL folder.

2. Click Update. If all instructions are correctly

executed, all data types of the motion-capture and

EEG system will be seen on the panel Record for

streams.

3. Select directory and name for the data on Storage

location panel.

4. Click Start. The data collection of the motion-capture

and EEG system will begin synchronously.

5. At the end of the recording click Stop. If recording

was successful, the data will be located on the

directory previously selected. Open the files to

confirm that they include the recorded information.

7. Real-time analyses and monitoring of the human system.

1. Execute the MATLAB, Python, or other code

that receives, processes, and augments the

streamed data. Example codes corresponding to the

representative examples described in the following

sections can be found here: https://github.com/

VilelminiKala/CloseLoopInterfaceJOVE

8. Generation of the augmented sensory feedback

1. Produce the sensory output using the proper device

(e.g., speakers, monitor, among others).

3. Experimental procedure

1. Follow the experimental procedure that is defined by the

setup, if any.
 

NOTE: The close-loop interfaces are designed to be

intuitively explored and learned. Thus, most of the times

no instructions are needed.

Representative Results

There are various interfaces that can be built based on the

protocol presented in the previous section and can be applied

on different populations for numerous purposes. Some

possible variations are described in section "Variations of

the Presented Close-Loop Interface" of Supplementary

Material.

In this section we demonstrate representative results of

2 sample close-loop interfaces that follow the protocol

described in the previous section. The setup, the

experimental procedure, and the participants of these studies

are explained in depth in sections "Example 1: Audio

Close-loop Interface of a Real Dyadic Interaction" and

"Example 2: Audio-visual Close-loop Interface of an

Artificial Dyadic Interaction" of the Supplementary File.

Results of Audio Close-loop Interface of a Real Dyadic

Interaction
 

https://www.jove.com
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In the study of "Audio close-loop interface of a real dyadic

interaction" (elaborately presented in section "Example 1:

Audio Close-loop Interface of a Real Dyadic Interaction"

of Supplementary Material), we used a proxy control

interface, illustrated in Figure 4, which uses the female

dancer's heart signal to alter the music danced. In real time,

we performed signal processing to extract the time of the

heartbeat and streamed this information to the Max system

to alter the speed of the performed song. This way, we

played the song back, altered by the biophysical signals. This

process led to further alterations of the motions and heartbeat

signals.

 

Figure 4: The audio based close-loop interface. 1. An ECG-HR wearable device monitors the activity of a salsa dancer

during the performance of her routines and feeds the signals to the interface at 500Hz. 2. Our interface analyses the ECG

data in real time. In each frame, it filters the raw data, extracts the R peaks of the QRS complex; and streams the peak

detection to MAX. 3. A third-party interface blends the speed of the audio with the speed of the heartrate. 4. The altered song

is played back to the dancers. Please click here to view a larger version of this figure.

Two salsa dancers interacted with the interface and

performed a well-rehearsed routine staging a choreography

and a spontaneously improvised dance. The dancers had to

perform the original version of the song once and a version

blended the original tempo of the song with the real-time

heartbeat stream. We refer to the later version which was

performed twice as alteration 1 and 2 of the song.

In the analysis presented below, we used the heart and audio

signal recorded. The peaks of the two signals extracted to

estimate MMS trains (see section "Micro-movements Spikes"

in Supplementary File), which preserve high frequency

fluctuations as shown in Figure 5.
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Figure 5: Estimation of MMS trains of the audio close-loop system. ECG time series are used to extract the RR-peaks

and the amplitude deviations from the overall (estimated) mean amplitude of the R-peaks obtained (mean-shifted data).

Then normalization by equation 1 (see Supplementary File, section "Micro-Movement Spikes") is used to obtain the MMS

trains. Similar methods are used to handle the audio waveforms and play the song back according to the person's real-time

performance. Please click here to view a larger version of this figure.

The MMS trains were well characterized as a continuous

random process, well represented byvthe continuous

Gamma family of probability distributions. MLE deemed this

continuous family of distributions as the best fit for both

data sets (see explanation in section "Gamma Distribution"

of Supplementary Material and Supplementary Figure 2).

This type of random process was used to track the shifts in

stochastic signatures of the biorhythms self-generated by bio-

signals from the human nervous systems.

From the empirically estimated shape and scale Gamma

parameters, we obtain the Gamma moments, the mean, the

variance, the skewness, and the kurtosis (see details of the

analysis in section "Stochastic Analysis" of Supplementary

Material). We then plot the estimated PDF. Figure 6 focuses

only on the heart signal and music, but the methods apply

similarly to the other biorhythms generated by the kinematics

signals presented in 41 .

The PDF of the heart and music signal are shown in

Figure 6A-B, where we highlight the differences between

the datasets of the two conditions, deliberate routine

and spontaneous improvisation. For each condition, we

underscore the shifts in stochastic signatures induced by the

temporal alterations of the song. Initially, they dance to the

original song. Then, as the heartbeat changes rhythms in real

time, the sonified fluctuations in this signal leads the dancers

to follow the temporal alterations of the song.

These are denoted alteration 1 and alteration 2. These

systematic shifts are described by the Gamma parameters.

Then, using the empirically estimated shape and scale

parameters, we obtained the four corresponding Gamma

https://www.jove.com
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moments for the heartbeat and the songs. These are displayed in Figure 6C for the heart (top) and the song

(bottom) signals.

 

Figure 6: Inducing systematic changes in the empirically estimated Gamma PDFs and their stochastic trajectories of

the Four Gamma Moments from the performance under the proxy control using the Audio Close-loop System. (A) PDFs

from the MMS trains of each of the data type (ECG top and audio file bottom) for each of the dance contexts, spontaneous

improvisation and deliberate routine. Legends are Imp Or (improvisation original) denoting the baseline condition at the start

of the session; Imp Alt1 denoting the improvisation during alteration 1; Imp Alt2 denoting improvisation during alteration 2.

(B) Likewise, for the deliberate rehearsed routine, Rout Or means routine original; Rout Alt1 means routine alteration 1; Rout

Alt2 means routine alteration 2. The panels in (C) show the systematic shifts in Gamma moments as both the audio signals

from the songs and those from the heart shift in tandem and in real time. Please click here to view a larger version of this

figure.

The shift of the signatures can be appreciated in these panels

(PDF and Gamma moments graphs), thus demonstrating that

the methods presented can capture the adaptation of the

heart to the alterations of the song that the proxy controller

produces in real time. As the songs shift rhythms, so do the

heart stochastic signatures and the transition of the stochastic

signatures is consistent in direction (which is also a finding

in 41  where we studied the shape and scale parameters).

Likewise, as the heart's signatures shift, so do the song's

signatures. This mirroring effects -the one affects the other

and as one shifts consistently towards a direction so does

other- follow the close-loop nature of this proxy controller

interface. The results underscore the utility of this setup and

gives proof of concept that we can systematically shift the

person's autonomic biorhythms within the context of dyadic

exchange.

Parallel shifts on the stochastic signatures of both the songs

and the bodily signals, demonstrate that the co-adaptation

of the whole system (participant and interface) is possible

using the peripheral signals. This process smoothly transpires

https://www.jove.com
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beneath the person's awareness and offers proof of concept

for the ideas to remotely and systematically shift the person's

bio-signals in correspondence with the external sensory

feedback of choice. In summary, we can guide the shifting of

the stochastic signatures in this continuous random process.

The methods enable to capture change and their rate along

the stochastic trajectories that we were able to build in near

real time.

To ascertain statistical significance in the shifts, we use

the non-parametric ANOVA, Kruskal-Wallis test followed

by multiple comparisons post hoc test. We compare the

signatures of the MMS of the heart data among the six

conditions. Figure 7 shows the multi-comparison of the

MMS heart data and corresponding Kruskal-Wallis table. The

multi-comparison plot indicates that there is a significant

difference between the baseline condition of the original

routine dance (Rout. Or) and the baseline condition of the

original improvised dance (Imp. Or). It is also important to

notice that the first alterations, Rout. Alt1 and Imp. Alt1,

shift to distributions which share comparable means and the

same applies to the second alterations, while the variance,

skewness and kurtosis shift on the Gamma moments space

(Figure 6C).

 

Figure 7: Results from the non-parametric Kruskal-Wallis and Multiple comparison post hoc tests. The results of the

non-parametric ANOVA (Kruskal-Wallis test) applied on the MMS of the heart data to compare the six conditions. The plot

demonstrates the multi-comparison of the 6 cases, indicating the significant difference between the "Rout. Or" and "Imp. Or"

conditions. The table shows the results of the Kruskal Wallis test. Please click here to view a larger version of this figure.

Results of Audio-Visual Close-Loop Interface of an

Artificial Dyadic Interaction
 

In the study of "Audio-visual close-loop interface of an

artificial dyadic interaction" (elaborately presented in section

"Example 2: Audio-visual close-loop Interface of an

artificial dyadic interaction" of Supplementary Material), 6

participants interacted with the interface, illustrated in Figures

8, which creates their mirrored avatar rendering the person's

own movements. The interface embeds position-dependent

sounds within the region surrounding the person during the

interaction. The participants were naïve as to the purpose

of the study. They had to walk around the room and figure

out how to control the sound that would surprisingly emerge

as they passed by a RoI (regions of interest) that the proxy

controller defined.

https://www.jove.com
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Figure 8: The visual representation of the Audio-Visual Interface. 1. A motion-capture system is utilized for acquisition

of the peripheral kinematic data. 2. The system collects the positions of the sensors (in our example LED's) to estimate the

skeleton - position on the bones. 3. The bone positions are then aligned in our MATLAB developed interface using our own

forward-kinematics model. 4. The aligned positions are used to map the skeleton information to our 3D rendered avatar. 5.

The mapping of the streamed data to the avatar is in real time which creates the sensation of looking at the person's mirrored

image. Please click here to view a larger version of this figure.

Figure 9 demonstrates the results of the audio-visual

interface of condition 1 (see Supplementary File for more

conditions), where the hip location activates the song when

the former in located in RoI. This figure shows the PDF and

Gamma signatures (see section "Data Types and Analyses"

of Supplementary Material) of the hip speed data of 6

different control participants (C1 to C6), when they were

inside and outside the RoI volume. The outcomes presented

here highlight the personalized differences on the adaptation

rate of the individual participants. These are indicated by

the shifts of the stochastic signatures, and the individual

outcomes emerging inside or outside the RoI volume. For

instance, we can notice that the PDF fit to the frequency

histograms of the MMS derived from the speed amplitude

of the hips of C3 and C4, were more symmetric (higher

shape value) and less noisy (lower scale value) when inside

the volume. In contrast, the rest of the participants show an

opposite pattern.

Empirically, we have found that signatures to the lower-right

corner are those of athletes and dancers, performing highly

skilled movements. Signatures lie on the upper-left region,

come from datasets of nervous systems with pathologies,

such as those with a diagnosis of autism spectrum disorders

ADHD22,32  and those of a deafferented participant21 . Within

the context of shifting patterns along a stochastic trajectory,

we obtain the median values of the shape and scale to

define the right lower quadrant (RLQ) and the left upper

quadrant (LUQ) where we track the overall quality of the

signal to noise ratio by accumulating this information over

time. This considers the updating of the median values

dynamically defining these quadrants as the person co-

adapts its internally generated biorhythms to those externally

controlled by the proxy but dependent upon the person's

internal ones.
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Figure 9: Empirically estimated Gamma PDFs and Gamma Signatures of the bodily biorhythms during interactions

using the Audio-Visual Close-Loop System. Using the MMS trains derived from the speed of the hips of each participant

(C1 - C6), we used MLE to fit the best PDF with 95% confidence intervals. Each participant is represented by a different

symbol while the conditions are represented by different colors. A family of Gamma PDFs when in the volume (in) differs

from that outside the volume (out). Besides the Gamma empirically estimated PDFs, the estimated Gamma shape and scale

parameters are also shown for each person on the Gamma parameter plane. Please click here to view a larger version of

this figure.

Table 1 shows p-values obtained from raw (speed) and MMS

data comparing the outcome across conditions when the

person's body part is inside the RoI vs. outside the RoI. The

results depicted on the table have been estimated using the

non-parametric ANOVA Kruskal-Wallis test.

Kruskal Wallis Test Speed data MMS

C1 0 1.34 e-05

C2 0 4.72E-15

C3 0 8.59E-34

C4 2.70E-21 3.16E-04

C5 0 1.11E-09

C6 0 5.95E-05

Table 1: Output of the non-parametric ANOAVA-Kruskal-Wallis test. The results of the Kruskal Wallis test comparing

the recordings of inside versus outside the Rol for the MMS and the speed data. We apply the test on the data of each

participant (C1 - C6) separately.
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Supplementary Files. Please click here to download these

files.

Discussion

This paper introduces the concept of proxy control via close-

loop co-adaptive, interactive, multi-modal interfaces that

harness, parameterize and re-parameterize the peripheral

signal of the person in the context of dyadic exchange. We

aimed at characterizing stochastic shifts in the fluctuations

of the person's biorhythms and parameterizing the change.

Further we aimed at systematically steering the stochastic

signatures of their biorhythms towards targeted levels of

noise-to-signal regimes in near real time.

We presented a generic protocol for building a close-

loop interface which satisfied 5 core elements: 1) the

collection of multiple bodily data coming from the CNS,

PNS, and ANS using various instruments and technologies;

2) the synchronized recording and streaming of the data;

3) the real-time analysis of the selected signals; 4) the

creation of sensory augmentation (audio, visual, etc.) using

physiological features extracted for the bodily signals; and

5) the continuous tracking of the human system and parallel

sensory augmentation closes the loop of the interaction

between the human and the system.

The generic protocol was applied on two example interfaces.

The first one investigates the dyadic exchange between two

human agents and the second one between a human and

an avatar agent. The two types of dyads were used to

provide proof of concept that the peripheral signal can be

systematically changed in real time and that these stochastic

changes can be precisely tracked. One dyad was composed

of two participants physically interacting, while the other

involved a participant interacting with a virtual agent in the

form of a 3D rendered avatar endowed with the person's

motions and with altered variants of these real-time motions.

Such alterations were evoked by interactive manipulations

driven by auditory and/or visual sensory inputs in a setting of

augmented sensations. In both the real dyad and the artificial

dyad, we demonstrated the feasibility of remotely shifting the

peripheral signals, including bodily biorhythms and autonomic

signals from the heartbeat.

We presented new experimental protocols to probe such

shifts in efferent motor variability as the kinesthetic signal

streams are being manipulated and re-parameterized in

near real time. This re-entrant information (kinesthetic

reafference48 ) proved valuable to shift the systems

performance in real time. They bear information about the

action's sensory consequences, which we can be precisely

tracked using the methods that we presented here.

We also showed data types and statistical methods

amenable to standardize our analyses. We provided multiple

visualization tools to demonstrate the real-time changes in

physiological activities naturally evolving in different contexts,

with empirically guided statistical inference that lends itself

to interpretation of the self-generated and self-controlled

nervous systems signals. Importantly, the changes that

were evoked by the proxy controller were smooth and

yet quantifiable, thus lending support to the notion that

peripheral activity is useful in more than one way. While we

can implement these methods using commercially available

wireless wearable sensors, we can systematically induce

changes in performance that are capturable in the biophysical

rhythms without stressing the system. It is important to

translate our methods to the clinical arena and use them as

a testbed to develop new intervention models (e.g., as when

using augmented reality in autism 49 ). In such models, we
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https://www.jove.com/
https://www.jove.com/files/ftp_upload/61943/Supplementary_Files.zip
https://www.jove.com/files/ftp_upload/61943/Supplementary_Files.zip


Copyright © 2021  JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com May 2021 • 171 •  e61943 • Page 18 of 22

will be able to track and quantify the sensory consequences

of the person's naturalistic actions, as the sensory inputs are

precisely manipulated, and the output is parameterized and

re-parameterized in near real time.

We offer this protocol as a general model to utilize

various biorhythmic activities self-generated by the human

nervous systems and harnessed non-invasively with wireless

wearables. Although we used a set of biosensors to

register EEG, ECG and kinematics in this paper, the

methods of recording, synchronizing and analyzing the

signals are general. The interface can thus incorporate other

technologies. Furthermore, the protocols can be modified to

include other naturalistic actions and contexts that extend

to the medical field. Because we have aimed for natural

behaviors, the setup that we have developed can be used in

playful settings (e.g., involving children and parents.)

Several disorders of the nervous systems could benefit from

such playful approaches to the control problem. In both types

of dyadic interactions that we showed here, the participants

could aim at consciously controlling the music, while the

proxy controller uses the peripheral output to unconsciously

manipulate and systematically shift its signatures. Because

scientists have spent years empirically mapping the Gamma

parameter plane and the corresponding Gamma moments

space across different age groups (neonates to 78 years

of age)19,50 ,51 ,52 ,53  and conditions (autism, Parkinson's

disease, stroke, coma state and deafferentation), for

different levels of control (voluntary, automatic, spontaneous,

involuntary and autonomic)25,47 ,54 , they have empirically

measured criteria denoting where on the Gamma spaces

the stochastic signatures should be for a good predictive

control. Previous research has also shown that we know

where the parameters are in the presence of spontaneous

random noise coming from the self-generated rhythms of the

human nervous systems7,19 ,55 ,56 . Within an optimization

schema minimizing biorhythmic motor noise, we can thus aim

at driving the signals in such a way as to attain the targeted

areas of the Gamma spaces where the shape and dispersion

signatures of the family of PDFs of each person is conducive

of high signal to noise ratio and predictive values. In this

sense, we do not lose gross data and rather use it effectively

to drive the system towards desirable levels of noise within a

given situation.

Dyadic interactions are ubiquitous in clinical or training

settings. They may occur between the trainer and the trainee;

the physician and the patient; the clinical therapist and the

patient; and they may also occur in research settings that

involve translational science and engage the researcher

and the participant. One of the advantages of the present

protocols is that while they are designed for dyads, they

also are personalized. As such, it is possible to tailor the

co-adaptive interactions to the person's best capabilities and

predispositions, according to their ranges of motion, their

ranges of sensory processing times and while considering the

ranges in signals' amplitude across the functional hierarchy

of the person's nervous systems. As the stochastic trajectory

emerges and evolves in time, it is also possible to ascertain

the rates of chance of the signatures and use that time series

to forecast several impending events along with possible

sensory consequences.

Finally, close-loop interfaces could be even used in

the art world. They could offer performing artists new

avenues to generate computationally driven forms of modern

dances, technology dances and new forms of visualization

and sonification of bodily expression. In such contexts,

the dancer's body can be turned into a sensory-driven

https://www.jove.com
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instrument to flexibly explore different sensory modalities

through sonification and visualization of the self-generated

biorhythmic activities, as shown by prior work in this

area40,41 ,43 ,46 . Such performance could augment the role

of a dancer on stage and let the audience experience subtle

bodily signals beyond visible movement.

Several aspects of this technology require further

development and testing to optimize their use in real-time

settings. The synchronous streaming demands high-speed

CPU/GPU power and memory capacity to really exploit the

notion of gaining time and being a step ahead when predicting

the sensory consequences of the ongoing motor commands.

Sampling rates of the equipment should be comparable in

order to be able to truly align the signals, perform proper

sensory fusion and explore the transmission of information

through the different channels of the nervous system. These

are some of the limitations present in this new interface.

All and all, this work offers a new concept to improve

the control of our bodily system while employing subliminal

means that nonetheless allow for systematic standardized

outcome measurements of stochastic change.
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