Back to chapter

7.3:

Long-patch Base Excision Repair

JoVE Core
Biologia Molecolare
This content is Free Access.
JoVE Core Biologia Molecolare
Long-patch Base Excision Repair

Lingue

Condividere

Nei mammiferi, si osserva un secondo tipo di BER, che viene spesso usato preferenzialmente durante la carenza di ATP, long-patch BER. Invece di rimuovere solo la singola base danneggiata, BER long-patch ripara una porzione lunga diversi nucleotidi. Al fine di ottenere questo risultato, una diversa DNA polimerasi, delta-epsilon, aggiunge diversi nucleotidi che sostituiscono i nucleotidi originali.Questo comporta una sporgenza di oligonucleotidi chiamato flap o lembo, contenente la base danneggiata. In presenza di un fattore di replicazione chiamato antigene nucleare cellulare proliferante, o PCNA, un’endonucleasi speciale, definita flap endonucleasi, FEN, rimuove questo flap prima che una DNA ligasi riempia il gap residuo. Il meccanismo di Long-patch BER è particolarmente utile per riparare i danni derivanti da radiazioni ionizzanti.

7.3:

Long-patch Base Excision Repair

Since the discovery of the two BER pathways, there has been a debate about how a cell chooses one pathway over the other and the factors determining this selection. Numerous in vitro experiments have pointed out multiple determinants for the sub-pathway selection. These are:

  1. Lesion type: Depending on the type of base damage, a specific DNA glycosylase – mono or bifunctional, is recruited to the damaged site. While the sequential action of a monofunctional glycosylase favors long patch repair events, the bifunctional glycosylase drives short-patch BER.
  1. State of the cell cycle: The major protein participants that distinguish the long-patch BER from the alternative pathway of short-patch BER are proliferating cell nuclear antigen (PCNA), protein replication factor C (RF-C), and the flap structure-specific endonuclease 1 (FEN1). PCNA is particularly recognized as the lynchpin of this pathway. It acts both as the scaffold to anchor the polymerase at the damaged site and binds to FEN-1 to facilitate its nuclease activity. Furthermore, RF-C is required to load the PCNA onto the DNA. All of these proteins are also required during DNA replication, suggesting that long-patch BER mends damages to replicating DNA while short-patch is used for repairing resting DNA.
  1. ATP shortage: It has also been observed that while single nucleotide or short patch BER predominates under normal physiological conditions, under conditions of ATP shortage, the preference is shifted towards long-patch BER. This is because poly(ADP-ribose) can serve as a unique source of ATP during the ligation step in BER.

Suggested Reading

  1. Fortini, Paola, and Eugenia Dogliotti. "Base damage and single-strand break repair: mechanisms and functional significance of short-and long-patch repair subpathways." DNA repair 6, no. 4 (2007): 398-409.
  2. Petermann, Eva, Mathias Ziegler, and Shiao Li Oei. "ATP-dependent selection between single nucleotide and long patch base excision repair." DNA repair 2, no. 10 (2003): 1101-1114.