Summary

Lens Transplantation in Zebrafish and its Application in the Analysis of Eye Mutants

Published: June 01, 2009
doi:

Summary

Lens development involves interactions with other tissues. Several zebrafish eye mutants are characterized by an abnormally small lens size. Here we demonstrate a lens transplantation experiment to determine whether this phenotype is due to intrinsic causes or defective interactions with tissues that surround the lens.

Abstract

The lens plays an important role in the development of the optic cup[1,2]. Using the zebrafish as a model organism, questions regarding lens development can be addressed. The zebrafish is useful for genetic studies due to several advantageous characteristics, including small size, high fecundity, short lifecycle, and ease of care. Lens development occurs rapidly in zebrafish. By 72 hpf, the zebrafish lens is functionally mature [3]. Abundant genetic and molecular resources are available to support research in zebrafish. In addition, the similarity of the zebrafish eye to those of other vertebrates provides basis for its use as an excellent animal model of human defects[4-7]. Several zebrafish mutants exhibit lens abnormalities, including high levels of cell death, which in some cases leads to a complete degeneration of lens tissues [8].

To determine whether lens abnormalities are due to intrinsic causes or to defective interactions with the surrounding tissues, transplantation of a mutant lens into a wild-type eye is performed. Using fire-polished metal needles, mutant or wild-type lenses are carefully dissected from the donor animal, and transferred into the host. To distinguish wild-type and mutant tissues, a transgenic line is used as the donor. This line expresses membrane-bound GFP in all tissues, including the lens. This transplantation technique is an essential tool in the studies of zebrafish lens mutants.

Protocol

Part 1: Preparing the embryos In this protocol, we will use the jjxy symbol to denote a hypothetical zebrafish lens mutant. Zebrafish strains are maintained in standard fish facility conditions at 28.5 C on a 14h light/10h dark cycle. In the evening, place males and females of the zebrafish strain jjxy:AB/TU; tg(mGFP) in a tank with a divider to separate them from each other. The progeny of this cross will express the GFP trans…

Discussion

Several steps require special attention during lens transplantations.

  1. Sharpened needles: It’s better to prepare several needles before carrying out lens transplantation, and the tip of the needles should be as thin as possible. A thicker needle will tear more tissue because of its wider diameter, causing a failure in the eye to heal.
  2. Arranging the embryos: Right before transplantation you must position the embryos so they are lying on their sides. When positioning, the 1.2% agarose can …

Acknowledgements

This procedure follows to a large extent the transplantation technique developed for cave fish by the lab of Bill Jeffrey.

Materials

Material Name Tipo Company Catalogue Number Comment
0.1mm diameter tungsten wire   A Johnson Matthey 45086  
Agarose(low melting point)   Sigma 39346  
Borosilicate glass capillaries   World Precision Instruments TW 100-4  
Forceps   Dumont #5 11252-30  
Pasteur pipette   Fisher 13-678-20C  
Pipette pump   Fisher 13-683C  
Petri Dish   CardinalHealth D1906  
Penicillin-streptomycin   GIBCO 15140-122  

Riferimenti

  1. Thut, C. J., Rountree, R. B., Hwa, M., Kingsley, D. M. A large-scale in situ screen provides molecular evidence for the induction of eye anterior segment structures by the developing lens. Dev Biol. 231, 63-76 (2001).
  2. Yamamoto, Y., Jeffery, W. R. Central role for the lens in cave fish eye degeneration. Science. 289, 631-633 (2000).
  3. Easter, S. S., Nicola, G. N. The development of vision in the zebrafish(Danio rerio). Dev Biol. 180, 646-663 (1996).
  4. Schmitt, E., Dowling, J. Early eye morphogenesis in the zebrafish. Brachydanio rerio. J.comp. Neuro. 344 (4), 532-542 (1994).
  5. Malicki, J. Harnessing the power of forward genetics–analysis of neuronal diversity and patterning in the zebrafish retina. Trends Neurosci. 23 (11), 531-541 (2000).
  6. Malicki, J., Pujic, Z., Thisse, C., Thisse, B., Wei, X. Forward and reverse genetic approaches to the analysis of eye development in zebrafish. Vision Res. 42 (4), 527-533 (2002).
  7. Avanesov, A., Malicki, J. Approaches to study neurogenesis in the zebrafish retina. Methods Cell Biol. 76, 333-384 (2004).
  8. Vihtelic, T. S., Hyde, D. R. Zebrafish mutagenesis yields eye morphological mutants with retinal and lens defects. Vision Res. 42, 535-540 (2002).
  9. Godinho, L., Mumm, J. S., Williams, P. R., Schroeter, E. H., Koerber, A., Park, S. W., Leach, S. D., Wong, R. O. Targeting of amacrine cell neurites to appropriate synaptic laminae in the developing zebrafish retina. Development. Nov 132, 5069-5079 (2005).
check_url/it/1258?article_type=t

Play Video

Citazione di questo articolo
Zhang , Y., McCulloch, K., Malicki, J. Lens Transplantation in Zebrafish and its Application in the Analysis of Eye Mutants. J. Vis. Exp. (28), e1258, doi:10.3791/1258 (2009).

View Video