Summary

纯化 M。 magneticum应变AMB - 1磁小体相关蛋白MamAΔ41

Published: March 25, 2010
doi:

Summary

妈妈是一个独特的磁相关蛋白被证明是参与磁激活。在这里,我们从目前的妈妈缺失突变体的净化协议(MamAΔ41)<em> M。 magneticum</em> AMB – 1。

Abstract

磁细菌组成的水生微生物,能够沿着地磁场的方向不同群体。这种行为被认为是帮助他们寻找合适的环境<em>(1)</em>。这种能力是由磁赋予的,一个细胞内的细胞器,包含一个线性链大会脂质囊泡每个能够biomineralize,并附上了〜50纳米磁铁矿或胶黄铁矿晶体。一个原则的功能囊泡的形成,被证明是需要的磁组件是妈妈。妈妈是一个非常丰富的磁相关的蛋白质,这是最特征的磁相关蛋白之一<em>在体内</em><em>(2-6)</em>。本文的重点,在妈妈的净化,尽管正在研究<em>在体内</em>,没有明确的功能或结构细节已经确定了它。生物信息学分析表明,妈妈是一个四tricopeptide重复(TPR),含蛋白质。 TPR是在广泛的蛋白质折叠的一部分,或形成一个结构基序,它可作为蛋白质相互作用,介导的多蛋白质复合物的模板<em>(7)</em>。 TPRS参与许多重要的任务,在真核细胞的细胞器的进程和许多细菌途径<em>(8-14)。</em>为了理解妈妈,一个独特的TPR,含有蛋白质,高度纯化的蛋白质是必需的第一步。在这篇文章中,我们目前为一个稳定的妈妈缺失突变体的净化(MamAΔ41)协议<em> M。 magneticum</em> AMB – 1。

Protocol

1。 妈妈在大肠杆菌中的基因的克隆和表达大肠杆菌 突变基因mamAΔ41Magnetospirillum magneticum AMB – 1的基因组DNA扩增的聚合酶链反应(PCR)引物:5' – GCATTACGCATATGGACGACATCCGCCAGGTG 3'和5' – GCGCGGCAGCCATA – TGGCATACG – 3“ 。在扩增的DNA片段,NcoI网站介绍,在起始密码子ATG和终止密码子与ScoI网站所取代。片段,NcoI和SACI消化和克隆到pET52b(+),在各自的…

Discussion

蛋白质纯化的生化或在任何蛋白质结构研究的主要步骤。由于每个蛋白质独特的是与自己的行为,需要定义其属性,并相应修改其净化。分析蛋白质的目标应该是,作为对使用净化生物信息学工具的第一步。它们被用来计算目标ISO电点,评估其需要减少/氧化环境,它需要特殊的离子/配体。我们的协议中有几个关键的修改反映了目标的独特性。这些修改包括缓冲区,工作温度和列调整。

<p class=…

Acknowledgements

我们承认对他的支持和对他们的建议和意见,诺姆Grimberg Geula达维多夫和陈格特曼博士阿米尔Aharoni。

Materials

Material Name Tipo Company Catalogue Number Comment
French Press Equipment Thermo scientific FA-078A  
Pressure cell Equipment Thermo scientific FA-032  
Ultra-centrifuge Equipment Sorvall Discovery 90SE  
Rottor Equipment Beckman Ti60  
Ultra-centrifuge tubes; PC-Bottle+Cap Assay 26.3ml Equipment Beckman BC-355618  
2.5cm diameter, Glass Econo-Column Chromatography Columns Equipment BioRad 737-2521  
Ni-NTA His Bind resin Equipment Novagen M0063428  
Spectrophotometer Equipment Amersham Biosiences Ultraspec 2100 pro  
Quartz cuvette Equipment Hellma 104-QS  
Fast Performance Liquid Chromatography- AKTA purifier 10 Equipment GE Healthcare Biosciences 28-4062-64  
Ion exchange column – MonoQ 4.6/100 PE Equipment GE Healthcare Biosciences 10025543  
Size exclusion pre-packed column-HiLoad 26/60 Superdex 200 Equipment GE Healthcare Biosciences 17-1071-01  
Centricon – Vivaspin15 – 10,000 MWCO Equipment Sartorius Stedim Biotech GmbH VS1501  
Table centrifuge Equipment Thermo scientific IEC CL30R  
MALDI-TOF Equipment Bruker Daltonics Reflex IV  
Tris-HCl (hydrotymethyl) aminomethane Reagent BioLab 20092391  
Sodium Chloride Reagent FRUTROM 235553470  
Imidazole Reagent Alfa Aesar 288-32-4  
EDTA free protease inhibitors cocktail Reagent Sigma P-8849  
Dnase I (Deoxyribonuclease I) Reagent Sigma DN-25  
Bovine Thrombin Reagent Fisher BioReagents BP25432  
Glycine Reagent BioLab 07132391  
Soudim Dodecyl Sulfate (SDS) Reagent BioLab 19822391  
Beta-mercaptoethanol Reagent Sigma M-3148  
InstantBlue Reagent Expedeon 1SB01L  
PageRuler Prestained Protein Ladder Reagent Fermentas SM0671  

Riferimenti

  1. Faivre, D., Schuler, D. Magnetotactic Bacteria and Magnetosomes. Chem Rev. 108, 4875-4898 (2008).
  2. D’Andrea, L. D., Regan, L. TPR proteins: the versatile helix. Trends Biochem Sci. 28, 655-662 (2003).
  3. Young, J. C., Barral, J. M., Hartl, U. l. r. i. c. h., F, . More than folding: localized functions of cytosolic chaperones. Trends Biochem Sci. 28, 541-547 (2003).
  4. Brocard, C., Hartig, A. Peroxisome targeting signal 1: is it really a simple tripeptide?. Biochim Biophys Acta. 1763, 1565-1573 (2006).
  5. Fransen, M., Amery, L., Hartig, A., Brees, C., Rabijns, A., Mannaerts, G. P., Van Veldhoven, P. P. Comparison of the PTS1- and Rab8b-binding properties of Pex5p and Pex5Rp/TRIP8b. Biochim Biophys Acta. 1783, 864-873 (2008).
  6. Baker, M. J., Frazier, A. E., Gulbis, J. M., Ryan, M. T. Mitochondrial protein-import machinery: correlating structure with function. Trends Cell Biol. 17, 456-464 (2007).
  7. Mirus, O., Bionda, T., von Haeseler, A., Schleiff, E. Evolutionarily evolved discriminators in the 3-TPR domain of the Toc64 family involved in protein translocation at the outer membrane of chloroplasts and mitochondria. J Mol Model. 15, 971-982 (2009).
  8. Gatsos, X., Perry, A. J., Anwari, K., Dolezal, P., Wolynec, P. P., Likic, V. A., Purcell, A. W., Buchanan, S. K., Lithgow, T. Protein secretion and outer membrane assembly in Alphaproteobacteria. FEMS Microbiol Rev. 32, 995-1009 (2008).
  9. Tiwari, D., Singh, R. K., Goswami, K., Verma, S. K., Prakash, B., Nandicoori, V. K. Key residues in Mycobacterium tuberculosis protein kinase G play a role in regulating kinase activity and survival in the host. J Biol Chem. 284, 27467-27479 (2009).
  10. Edqvist, P. J., Broms, J. E., Betts, H. J., Forsberg, A., Pallen, M. J., Francis, M. S. Tetratricopeptide repeats in the type III secretion chaperone, LcrH: their role in substrate binding and secretion. Mol Microbiol. 59, 31-44 (2006).
  11. Grunberg, K., Muller, E. C., Otto, A., Reszka, R., Linder, D., Kube, M., Reinhardt, R., Schuler, D. Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Appl Environ Microbiol. 70, 1040-1050 (2004).
  12. Komeili, A., Vali, H., Beveridge, T. J., Newman, D. K. Magnetosome vesicles are present before magnetite formation, and MamA is required for their activation. Proc Natl Acad Sci USA. 101, 3839-3843 (2004).
  13. Okuda, Y., Fukumori, Y. Expression and characterization of a magnetosome-associated protein, TPR-containing MAM22, in Escherichia coli. FEBS Lett. 491, 169-173 (2001).
  14. Taoka, A., Asada, R., Sasaki, H., Anzawa, K., Wu, L. F., Fukumori, Y. Spatial localizations of Mam22 and Mam12 in the magnetosomes of Magnetospirillum magnetotacticum. J Bacteriol. 188, 3805-3812 (2006).
  15. Studier, F. W. Protein production by auto-induction in high density shaking cultures. Protein Expression and Purification. 41, 207-234 (2005).
check_url/it/1844?article_type=t

Play Video

Citazione di questo articolo
Zeytuni, N., Zarivach, R. Purification of the M. magneticum Strain AMB-1 Magnetosome Associated Protein MamAΔ41. J. Vis. Exp. (37), e1844, doi:10.3791/1844 (2010).

View Video