Summary

Ортотопическая Модель серозного рака яичников у иммунокомпетентных мышей для В естественных условиях Опухоль изображений и мониторинг иммунного ответа опухоли

Published: November 28, 2010
doi:

Summary

Для изучения<em> В естественных условиях</em> Рост опухоли и микроокружения, мы использовали сингенных и ортотопической мышиной модели рака яичников у иммунокомпетентных животных. Мы трансдуцированных клетка опухоли мышей линии (MOV1) с Katushka флуоресцентный белок (MOV1<sup> KAT</sup>), И здесь мы показываем свою ортотопической имплантации в яичнике и<em> В естественных условиях</em> Изображений.

Abstract

Background: Ovarian cancer is generally diagnosed at an advanced stage where the case/fatality ratio is high and thus remains the most lethal of all gynecologic malignancies among US women 1,2,3. Serous tumors are the most widespread forms of ovarian cancer and 4,5 the Tg-MISIIR-TAg transgenic represents the only mouse model that spontaneously develops this type of tumors. Tg-MISIIR-TAg mice express SV40 transforming region under control of the Mullerian Inhibitory Substance type II Receptor (MISIIR) gene promoter 6. Additional transgenic lines have been identified that express the SV40 TAg transgene, but do not develop ovarian tumors. Non-tumor prone mice exhibit typical lifespan for C57Bl/6 mice and are fertile. These mice can be used as syngeneic allograft recipients for tumor cells isolated from Tg-MISIIR-TAg-DR26 mice.

Objective: Although tumor imaging is possible 7, early detection of deep tumors is challenging in small living animals. To enable preclinical studies in an immunologically intact animal model for serous ovarian cancer, we describe a syngeneic mouse model for this type of ovarian cancer that permits in vivo imaging, studies of the tumor microenvironment and tumor immune responses.

Methods: We first derived a TAg+ mouse cancer cell line (MOV1) from a spontaneous ovarian tumor harvested in a 26 week-old DR26 Tg-MISIIR-TAg female. Then, we stably transduced MOV1 cells with TurboFP635 Lentivirus mammalian vector that encodes Katushka, a far-red mutant of the red fluorescent protein from sea anemone Entacmaea quadricolor with excitation/emission maxima at 588/635 nm 8,9,10. We orthotopically implanted MOV1Kat in the ovary 11,12,13,14 of non-tumor prone Tg-MISIIR-TAg female mice. Tumor progression was followed by in vivo optical imaging and tumor microenvironment was analyzed by immunohistochemistry.

Results: Orthotopically implanted MOV1Kat cells developed serous ovarian tumors. MOV1Kat tumors could be visualized by in vivo imaging up to three weeks after implantation (fig. 1) and were infiltrated with leukocytes, as observed in human ovarian cancers 15 (fig. 2).

Conclusions: We describe an orthotopic model of ovarian cancer suitable for in vivo imaging of early tumors due to the high pH-stability and photostability of Katushka in deep tissues. We propose the use of this novel syngeneic model of serous ovarian cancer for in vivo imaging studies and monitoring of tumor immune responses and immunotherapies.

Protocol

1. Культуре клеток Перед ортотопической инъекции, культуры MOV1 Kat клетки, полученные из DR26 опухолей, в T175 колбу, пока они не 90% вырожденная. План использования от 1 до 5 миллионов клеток на инъекцию, для чего потребуется 1 или 2 T175 колб. В день инъекции, урожай клеток и определ?…

Discussion

Хирургии и Ортотопическая инъекций

Ортотопическая инъекций в яичниках сумки требует подготовки и точности. Таким образом

  1. В случае плохой хирургический опыт, практика с трупов в первую очередь.
  2. Использование преимущественно повторнородящих женщин (один или…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Эта работа была поддержана NIH грант P01 А.И. 068730 (SNC, Н. С.), грант NIH CA016520 / TAPITMAT (NS), частное финансирование из Фонда Claneil (NS) и яичников SPORE предоставить РКИК и Университета Пенсильвании ( P50 CA83638) и Fox Chase Cancer Center Основные Грант (P30 CA06927) (ДКК). Авторы выражают благодарность отличном техническом содействии оптический / Биолюминесценция Основные фонда направлено доктором Э. Delikatny в Университете Пенсильвании, Энтони Secreto из стволовых клеток и ксенотрансплантата Основные режиссера д-р Г. Дане-Денуайе в Университете Пенсильвании рака Центр подготовки к SNC ортотопической технике инъекций и Denada Dangaj в Университете штата Пенсильвания / ОЦРК для оказания помощи по хирургии.

Materials

Material Name Tipo Company Catalogue Number Comment
DMEM-GLUTAMAX   Invitrogen 10564-011  
PBS   Gibco 14040  
Versene   Lonza 17-711E  
Heating pad   Deltaphase 39 DP  
Povidone pads   Dynarex 1108  
Alcohol pads   Fisher 06-669-62  
Artificial tears ointment   Phoenix Pharma., Inc. 17845-153  
Ketoprofen   Fort Dodge laboratories    
3cc/insulin syringe   BD 309301  
Polyg Polyglycolic Acid suture/needle (3/8 19mm)   Syneture 9612-31  
Tissue adhesive   Vetbond 3M  
Vet Bactrim/ oral suspension   Hi-tech Pharmacal 840823  
IVIS-Lumina   Caliper lifesciences    
Isofluorane   Phoenix Pharma., Inc. J108013  
Fetal Bovine Serum, Qualified   Invitrogen 10437036  
Penicillin/streptomycin   Gibco 15140  
TurboFP635 mammalian vector   Evrogen FP721  
T175 flasks   cellstar 660-190  

Riferimenti

  1. Etzioni, R., et al. The case for early detection. Nat Rev Cancer. 3, 243-252 (2003).
  2. Sasaroli, D., Coukos, G., Scholler, N. Beyond CA125: the coming of age of ovarian cancer biomarkers. Are we there yet. Future Medicine. 3, 275-288 (2009).
  3. Anderson, G. L., et al. Assessing Lead Time of Selected Ovarian Cancer Biomarkers: A Nested Case Control Study. J Natl Cancer Inst. 102, 26-38 (2010).
  4. Auersperg, N., Wong, A. S., Choi, K. C., Kang, S. K., Leung, P. C. Ovarian surface epithelium: biology, endocrinology, and pathology. Endocr Rev 22. , 255-288 (2001).
  5. Dubeau, L. The cell of origin of ovarian epithelial tumours. Lancet Oncol. 9, 1191-1197 (2008).
  6. Connolly, D. C., et al. Female mice chimeric for expression of the simian virus 40 TAg under control of the MISIIR promoter develop epithelial ovarian cancer. Cancer Res. 63, 1389-1397 (2003).
  7. Hensley, H., et al. Magnetic resonance imaging for detection and determination of tumor volume in a genetically engineered mouse model of ovarian cancer. Cancer Biol Ther. 6, (2007).
  8. Deliolanis, N. C., et al. Performance of the red-shifted fluorescent proteins in deep-tissue molecular imaging applications. J Biomed Opt. 13, (2008).
  9. Hoffman, R. M. A better fluorescent protein for whole-body imaging. Trends Biotechnol. 26, (2008).
  10. Shcherbo, D., et al. far-red fluorescent protein for whole-body imaging. Nat Methods. 4, 741-746 (2007).
  11. Fu, X., Hoffman, R. M. Human ovarian carcinoma metastatic models constructed in nude mice by orthotopic transplantation of histologically-intact patient specimens. Anticancer Res. 13, 283-286 (1993).
  12. Kiguchi, K., et al. A patient-like orthotopic implantation nude mouse model of highly metastatic human ovarian cancer. Clinical & experimental metastasis 16. , 751-756 (1998).
  13. Bao, R., et al. Activation of cancer-specific gene expression by the survivin promoter. J Natl Cancer Inst. 94, 522-528 (2002).
  14. Connolly, D. C., Hensley, H. H. Xenograft and Transgenic Mouse Models of Epithelial Ovarian Cancer and Non Invasive Imaging Modalities to Monitor Ovarian Tumor Growth In situ -Applications in Evaluating Novel Therapeutic Agents. Current Protocols in Pharmacology 45. , 1-36 .
  15. Milne, K., et al. Systematic analysis of immune infiltrates in high-grade serous ovarian cancer reveals CD20, FoxP3 and TIA-1 as positive prognostic factors. , (2009).
check_url/it/2146?article_type=t

Play Video

Citazione di questo articolo
Nunez-Cruz, S., Connolly, D. C., Scholler, N. An Orthotopic Model of Serous Ovarian Cancer in Immunocompetent Mice for in vivo Tumor Imaging and Monitoring of Tumor Immune Responses. J. Vis. Exp. (45), e2146, doi:10.3791/2146 (2010).

View Video