Summary

基因传递到产后大鼠脑非心室质粒注射和电穿孔

Published: September 17, 2010
doi:

Summary

这个协议描述了一种非病毒的基因结构的交付方法的生活啮齿动物脑的某些区域。该方法由质粒制备,微管制造,新生鼠的小狗手术,显微注射的构造,并<em>在体内</em>电。

Abstract

转基因动物的创作是一种标准的方法,在研究一个基因在体内的兴趣的功能。然而,许多基因敲除或转基因动物是没有生命力的,在这些修改后的基因表达或在整个有机体中删除的情况下。此外,各种补偿机制往往使人们难以解释的结果。补偿效果,无论是定时的基因表达或转染细胞的数量限制,可缓解。

产后非心室显微注射和体内电的方法,可以有针对性地提供基因,siRNA或染料分子直接到一个小区域的新生啮齿动物脑的兴趣。在传统的心室注射技术相比,这种方法允许非洄游类型的细胞转染。这里介绍的方法转染的动物,可用于双光子,例如,在活体成像对急性脑片电生理实验。

Protocol

1。简介转基因动物的创作是一种强大的方法,在动物活体1,解开疾病机制2,3以及操纵细胞的属性4的基因的功能进行调查。但是,该过程是相当费力,非常耗时且昂贵,因此有必要使用替代的基因传递方法,如病毒注射液5, 电 6和新生儿在子宫内电 7,8脑室注射。产后非室注射和电的方法,都有一套独特的优势:使用非?…

Discussion

到生活的啮齿类动物的大脑中的基因传递方法是建立在子宫电7,8,11,12和,最近, 产后电6。然而,这些方法的基础上脑室注射质粒DNA,这可能是多个应用程序的限制。例如,这些方法不容许针对某些脑区如海马,也不等非迁徙作为皮层星形胶质细胞细胞类型的转染的细胞。首先被用于基因运送到13小脑的神经元电耦合的非室注射。我们的协议说明非心室法对大鼠脑…

Acknowledgements

我们感谢配乐录制的视频,伊万Molotkov为CAG – EGFP质粒制备的三维动画和彼得Blaesse博士的帮助,叶卡捷琳娜Karelina。

这项工作是由来自芬兰的国际流动,芬兰文化基金会和芬兰科学院中心的赠款支持。

Materials

Material Name Tipo Company Catalogue Number Comment
2A-sa dumb Tweezers, 115mm equipment XYtronic XY-2A-SA Treat with 70% ethanol for disinfection before use in surgical manipulations
Biological Temperature Controller with stainless steel heating pad equipment Supertech TMP-5b  
Borosilicate tube with filament material Sutter Instruments BF120-69-10 Glass needle
Disposable drills material Meisinger HP 310 104 001 001 008  
Dulbeco’s PBS 10X reagent Sigma D1408  
Dumont #5 forceps, 110 mm equipment FST 91150-20 Treat with 70% ethanol for disinfection before use in surgical manipulations
Ealing microelectrode puller equipment Ealing 50-2013 Vertical electrode glass puller
Ethilon monofil polyamide 6-0 FS-3 16 mm 3/8c material Johnson & Johnson Medical EH7177H Surgical threads
Exmire micro syringe 10.0 ml equipment Exmire MS*GLLX00 Gas-tight syringe
Fast Green reagent Sigma F7252  
Forceps electrodes equipment BEX LF650P3 Treat with 70% ethanol for disinfection prior to use
Foredom drill control equipment Foredom FM3545 Surgical drill power supply and control. Currently available analogue is micromotor kit K.1070 (Foredom)
Foredom micro motor handpiece equipment Foredom MH-145 Currently available analogue is micromotor kit K.1070 (Foredom)
Gas anesthesia platform for mice equipment Stoelting 50264 Assembled on stereotaxic instrument
Isoflurane reagent Baxter FDG9623  
Micro dressing forceps, 105 mm equipment Aesculap BD302R Treat with 70% ethanol for disinfection before use in surgical manipulations
Microfil material WPI MF34G-5 Micro syringe filling capillaries
Mineral oil reagent Sigma M8410  
NanoFil Syringe 10 microliter equipment WPI NANOFIL Hamilton syringe
plasmid CAG-EGFP reagent     Extracted and purified with EndoFree Plasmid Maxi Kit (Qiagen) and dissolved in nuclease free water to concentration 1.5 mg/ml
Pulse generator CUY21Vivo-SQ equipment BEX CUY21Vivo-SQ  
Schiller electrode gel reagent Schiller AG 2.158000 Conductive gel
Small animal stereotaxic instrument equipment David Kopf Instruments 900  
Stoelting mouse and neonatal rat adaptor equipment Stoelting 51625 Assembled on stereotaxic instrument. Treat earbars with 70% ethanol for disinfection before use in surgical manipulations
Student iris scissors, straight 11.5 cm equipment FST 91460-11 Treat with 70% ethanol for disinfection before use in surgical manipulations
Sugi absorbent swabs 17 x 8 mm material Kettenbach 31602 Surgical tampons
UMP3 microsyringe pump and Micro 4 microsyringe pump controller equipment WPI UMP3-1 Microinjector and controller
Univentor 400 Anesthesia Unit equipment Univentor 8323001  

Riferimenti

  1. Gerlai, R., Clayton, N. S. Analyzing hippocampal function in transgenic mice: an ethological perspective. Trends Neurosci. 22, 47-51 (1999).
  2. McGowan, E., Eriksen, J., Hutton, M. A decade of modeling Alzheimer’s disease in transgenic mice. Trends Genet. 2, 281-289 (2006).
  3. Cryan, J. F., Holmes, A. The ascent of mouse: advances in modeling human depression and anxiety. Nat. Rev. Drug Discov. 4, 775-790 (2005).
  4. Wells, T., Carter, D. A. Genetic engineering of neural function in transgenic rodents: towards a comprehensive strategy. J. Neurosci. Methods. 108, 111-130 (2001).
  5. Pilpel, N. reproducible transduction of select forebrain regions by targeted recombinant virus injection into the neonatal mouse brain. J. Neurosci. Methods. 182, 55-63 (2009).
  6. Boutin, C. Efficient in vivo electroporation of the postnatal rodent forebrain. PLoS One. 3, e1883-e1883 (2008).
  7. Saito, T., Nakatsuji, N. Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev. Biol. 240, 237-246 (2001).
  8. Saito, T. In vivo electroporation in the embryonic mouse central nervous system. Nat. Protoc. 1, 1552-1558 (2006).
  9. Matsuda, T., Cepko, C. L. Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc. Natl. Acad. Sci. U S A. 101, 16-22 (2004).
  10. De Simoni, A., Yu, L. M. Preparation of organotypic hippocampal slice cultures: interface method. Nat. Protoc. 1, 1439-1445 (2006).
  11. Walantus, W. In utero intraventricular injection and electroporation of E15 mouse embryos. J. Vis. Exp. , (2007).
  12. Walantus, W., Elias, L., Kriegstein, A. In utero intraventricular injection and electroporation of E16 rat embryos. J. Vis. Exp. , (2007).
  13. Umeshima, H., Hirano, T., Kengaku, M. Microtubule-based nuclear movement occurs independently of centrosome positioning in migrating neurons. Proc. Natl. Acad. Sci. U S A. 104, 16182-16187 (2007).
  14. Ashwell, K., Paxinos, G. . Atlas of the Developing Rat Nervous System. , (2008).
  15. Paxinos, G., Watson, C. . The Rat Brain in Stereotaxic Coordinates. , (2007).
check_url/it/2244?article_type=t

Play Video

Citazione di questo articolo
Molotkov, D. A., Yukin, A. Y., Afzalov, R. A., Khiroug, L. S. Gene Delivery to Postnatal Rat Brain by Non-ventricular Plasmid Injection and Electroporation. J. Vis. Exp. (43), e2244, doi:10.3791/2244 (2010).

View Video