Summary

卵泡在蛋白质降解的3维系统的封装和文化的一种方法

Published: March 15, 2011
doi:

Summary

描述一个卵巢卵泡封装在三维纤维蛋白 – 海藻酸钠的互穿网络的新方法。此系统结合蛋白水解降解结构的支持,以支持发展不成熟的卵泡产生成熟的卵母细胞。这种方法可应用于文化细胞聚集,保持不限制扩张的细胞 – 细胞接触。

Abstract

卵泡是卵巢分泌性激素的功能单元,并支持卵母细胞成熟 。体外卵泡技术提供了一个工具,以调查的基本生物学模型卵泡发育,并进一步被作为一种技术,保留生育开发诊所1-4。我们在体外培养系统,采用水凝胶以模仿卵巢原生环境,保持3D滤泡结构,细胞间的相互作用和旁分泌的信号,直接卵泡发育5。在此之前,卵泡培养成功的海藻酸钠,一种惰性藻类衍生的多糖,经过与离子凝胶6-8。在浓度为0.25%W / V形成的海藻酸钠水凝胶是最宽松的卵泡文化,并保留了最高发展能力9。海藻酸钠水凝胶不降解,从而增加卵泡直径结果在压缩力的毛囊,会影响卵泡发育10。我们后来发展为基础的文化系统,纤维蛋白 – 海藻酸钠互穿网络(FA – IPN),其中纤维蛋白和褐藻胶的混合物凝胶同时。这种组合提供了一个动态的力学环境,因为这两个组件有助于矩阵刚性最初,然而,日益增长的卵泡分泌的蛋白酶降解,只留下海藻酸钠提供支持的矩阵中的纤维蛋白。使用IPN,海藻酸钠含量可减少0.25%以下,这是不符合海藻酸钠仅5。因此,随着卵泡的扩大,它会遇到由于减少固体含量减少压缩力。在这里,我们描述了一种封装方法,并在FA – IPN的卵巢卵泡体外培养体系。动态力学环境模仿自然卵巢的环境中,小卵泡驻留在一个刚性的皮质,并移动到一个更宽松的髓质,因为它们增加在大小11。为了支持大于10的6倍量的增加,人类毛囊通常在体内进行降解成分,可能是特别为临床翻译的关键。

Protocol

1。卵泡的分离动物实验是由美国国立卫生指南研究院提出的指导方针和规定,对实验动物的照顾和使用和建立的机构使用动物,并在西北大学保健协议的规定执行。 为了达到最佳效果,所有解剖进行了pH值控制在L15的媒体在37 ° C加热温度控制的阶段,并在一个洁净工作台,空气中的CO 2水平,以减少细菌污染。剥离媒体(DM)的准备与L15媒体50 IU / …

Discussion

所提出的卵泡在FA – IPN的封装方法允许在体外的3D环境中的卵泡文化。一个FA – IPN是一个动态的,细胞的反应矩阵最初的机械性能相结合的纤维蛋白和海藻酸钠决定。在文化,封装毛囊激活蛋白酶降解的IPN只有一个组成部分,纤维蛋白,它在一个逐渐下降的凝胶的刚性,完全是由文化的剩余海藻酸钠贡献的结果。与FA – IPN获得的动态力学性能与自然环境的发展毛囊相一致,并已提出改善率比?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作是由美国国立卫生研究院(U54HD41857和PL1EB008542,P30内Oncofertility联盟路线图资助的生物材料的核心)。

Materials

Material Name Tipo Company Catalogue Number Comment
Fetuin   Sigma-Aldrich, St. Louis, MO F3385  
FBS   Invitrogen, Gibco 10082-139  
Aprotinin   Roche 10236624001  
CaCl2   Wako 039-00475 40 mM
EGF   Sigma A412  
rFSH   A.F. Parlow, National Hormone and Peptide Program, National Institute of Diabetes and Digestive and Kidney Diseases    
hCG   Sigma CG-5  
Hyaluronidase   Sigma A1603  
ITS   Sigma I1884-1VL  
L-15   Gibco 11415  
αMEM+Gluta MAX   Gibco 32561  
Pen-Strep   Cellgro 30-002-CI  
TBS   Pierce 28379  
Tisseel Fibrin kit   Baxter 921030  
Sodium Alginate   FMC BioPolymers LF200DL Mw 418kDa

Riferimenti

  1. Cortvrindt, R., Smitz, J., VanSteirteghem, A. C. In-vitro maturation, fertilization and embryo development of immature oocytes from early preantral follicles from prepuberal mice in a simplified culture system. Human Reproduction. 11, 2656-2666 (1996).
  2. Smitz, J., Cortvrindt, R., Hu, Y. X. Epidermal growth factor combined with recombinant human chorionic gonadotrophin improves meiotic progression in mouse follicle-enclosed oocyte culture. Human Reproduction. 13, 664-669 (1998).
  3. Xu, M., Banc, A., Woodruff, T. K., Shea, L. D. Secondary Follicle Growth and Oocyte Maturation by Culture in Alginate Hydrogel Following Cryopreservation of the Ovary or Individual Follicles. Biotechnology and Bioengineering. 103, 378-386 (2009).
  4. Smitz, J. Current achievements and future research directions in ovarian tissue culture, in vitro follicle development and transplantation: implications for fertility preservation. Human Reproduction Update. 16, 395-414 (2010).
  5. Shikanov, A., Xu, M., Woodruff, T. K., Shea, L. D. Interpenetrating fibrin-alginate matrices for in vitro ovarian follicle development. Biomaterials. 30, 5476-5485 (2009).
  6. West, E. R., Xu, M., Woodruff, T. K., Shea, L. D. Physical properties of alginate hydrogels and their effects on in vitro follicle development. Biomaterials. 28, 4439-4448 (2007).
  7. Kreeger, P. K., Fernandes, N. N., Woodruff, T. K., Shea, L. D. Regulation of mouse follicle development by follicle-stimulating hormone in a three-dimensional in vitro culture system is dependent on follicle stage and dose. Biology of Reproduction. 73, 942-950 (2005).
  8. Pangas, S. A., Saudye, H., Shea, L. D., Woodruff, T. K. Novel approach for the three-dimensional culture of granulosa cell-oocyte complexes. Tissue Engineering. 9, 1013-1021 (2003).
  9. Xu, M., West, E., Shea, L. D., Woodruff, T. K. Identification of a stage-specific permissive in vitro culture environment for follicle growth and oocyte development. Biology of Reproduction. 75, 916-923 (2006).
  10. Xu, M. Encapsulated Three-Dimensional Culture Supports Development of Nonhuman Primate Secondary Follicles. Biology of Reproduction. 81, 587-594 (2009).
  11. West, E. R., Shea, L. D., Woodruff, T. K. Engineering the follicle micro environment. Seminars in Reproductive Medicine. 25, 287-299 (2007).
  12. Xu, M., Kreeger, P. K., Shea, L. D., Woodruff, T. K. Tissue-engineered follicles produce live, fertile offspring. Tissue Engineering. 12, 2739-2746 (2006).
  13. Ebisch, I. M. W. Review of the role of the plasminogen activator system and vascular endothelial growth factor in subfertility. Fertility and Sterility. 90, 2340-2350 (2008).
check_url/it/2695?article_type=t

Play Video

Citazione di questo articolo
Shikanov, A., Xu, M., Woodruff, T. K., Shea, L. D. A Method for Ovarian Follicle Encapsulation and Culture in a Proteolytically Degradable 3 Dimensional System. J. Vis. Exp. (49), e2695, doi:10.3791/2695 (2011).

View Video