Summary

A Method for Ovarian Follicle Encapsulation and Culture in a Proteolytically Degradable 3 Dimensional System

Published: March 15, 2011
doi:

Summary

A new method for ovarian follicle encapsulation in a 3D fibrin-alginate interpenetrating network is described. This system combines structural support with proteolytic degradation to support the development of immature follicles to produce mature oocytes. This method may be applied to culture cell aggregates to maintain cell-cell contacts without limiting expansion.

Abstract

The ovarian follicle is the functional unit of the ovary that secretes sex hormones and supports oocyte maturation. In vitro follicle techniques provide a tool to model follicle development in order to investigate basic biology, and are further being developed as a technique to preserve fertility in the clinic1-4. Our in vitro culture system employs hydrogels in order to mimic the native ovarian environment by maintaining the 3D follicular architecture, cell-cell interactions and paracrine signaling that direct follicle development 5. Previously, follicles were successfully cultured in alginate, an inert algae-derived polysaccharide that undergoes gelation with calcium ions6-8. Alginate hydrogels formed at a concentration of 0.25% w/v were the most permissive for follicle culture, and retained the highest developmental competence 9. Alginate hydrogels are not degradable, thus an increase in the follicle diameter results in a compressive force on the follicle that can impact follicle growth10. We subsequently developed a culture system based on a fibrin-alginate interpenetrating network (FA-IPN), in which a mixture of fibrin and alginate are gelled simultaneously. This combination provides a dynamic mechanical environment because both components contribute to matrix rigidity initially; however, proteases secreted by the growing follicle degrade fibrin in the matrix leaving only alginate to provide support. With the IPN, the alginate content can be reduced below 0.25%, which is not possible with alginate alone 5. Thus, as the follicle expands, it will experience a reduced compressive force due to the reduced solids content. Herein, we describe an encapsulation method and an in vitro culture system for ovarian follicles within a FA-IPN. The dynamic mechanical environment mimics the natural ovarian environment in which small follicles reside in a rigid cortex and move to a more permissive medulla as they increase in size11. The degradable component may be particularly critical for clinical translation in order to support the greater than 106-fold increase in volume that human follicles normally undergo in vivo .

Protocol

1. Follicle Isolation Experiments on animals were performed in accordance with the guidelines and regulations set forth by the National Institutes of Health Guide for the Care and Use of Laboratory Animals and the established Institutional Animal Use and Care protocol at Northwestern University. For optimal results, all dissections are carried out in L15 media for pH control at ambient levels of CO2, on 37°C heated stages for temperature control, and o…

Discussion

The presented ovarian follicle encapsulation method in a FA-IPN allows follicle culture in a 3D environment in vitro. A FA-IPN is a dynamic, cell-responsive matrix in which the initial mechanical properties are determined by the combination of both fibrin and alginate. During the culture, the encapsulated follicle activates proteases that degrade only one component of the IPN, the fibrin, which results in a gradually decreasing gel rigidity that is contributed solely by the remaining alginate at the end of the c…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

This work was funded by NIH (U54HD41857 and PL1EB008542, a P30 Biomaterials Core within the Oncofertility Consortium Roadmap grant).

Materials

Material Name Tipo Company Catalogue Number Comment
Fetuin   Sigma-Aldrich, St. Louis, MO F3385  
FBS   Invitrogen, Gibco 10082-139  
Aprotinin   Roche 10236624001  
CaCl2   Wako 039-00475 40 mM
EGF   Sigma A412  
rFSH   A.F. Parlow, National Hormone and Peptide Program, National Institute of Diabetes and Digestive and Kidney Diseases    
hCG   Sigma CG-5  
Hyaluronidase   Sigma A1603  
ITS   Sigma I1884-1VL  
L-15   Gibco 11415  
αMEM+Gluta MAX   Gibco 32561  
Pen-Strep   Cellgro 30-002-CI  
TBS   Pierce 28379  
Tisseel Fibrin kit   Baxter 921030  
Sodium Alginate   FMC BioPolymers LF200DL Mw 418kDa

Riferimenti

  1. Cortvrindt, R., Smitz, J., VanSteirteghem, A. C. In-vitro maturation, fertilization and embryo development of immature oocytes from early preantral follicles from prepuberal mice in a simplified culture system. Human Reproduction. 11, 2656-2666 (1996).
  2. Smitz, J., Cortvrindt, R., Hu, Y. X. Epidermal growth factor combined with recombinant human chorionic gonadotrophin improves meiotic progression in mouse follicle-enclosed oocyte culture. Human Reproduction. 13, 664-669 (1998).
  3. Xu, M., Banc, A., Woodruff, T. K., Shea, L. D. Secondary Follicle Growth and Oocyte Maturation by Culture in Alginate Hydrogel Following Cryopreservation of the Ovary or Individual Follicles. Biotechnology and Bioengineering. 103, 378-386 (2009).
  4. Smitz, J. Current achievements and future research directions in ovarian tissue culture, in vitro follicle development and transplantation: implications for fertility preservation. Human Reproduction Update. 16, 395-414 (2010).
  5. Shikanov, A., Xu, M., Woodruff, T. K., Shea, L. D. Interpenetrating fibrin-alginate matrices for in vitro ovarian follicle development. Biomaterials. 30, 5476-5485 (2009).
  6. West, E. R., Xu, M., Woodruff, T. K., Shea, L. D. Physical properties of alginate hydrogels and their effects on in vitro follicle development. Biomaterials. 28, 4439-4448 (2007).
  7. Kreeger, P. K., Fernandes, N. N., Woodruff, T. K., Shea, L. D. Regulation of mouse follicle development by follicle-stimulating hormone in a three-dimensional in vitro culture system is dependent on follicle stage and dose. Biology of Reproduction. 73, 942-950 (2005).
  8. Pangas, S. A., Saudye, H., Shea, L. D., Woodruff, T. K. Novel approach for the three-dimensional culture of granulosa cell-oocyte complexes. Tissue Engineering. 9, 1013-1021 (2003).
  9. Xu, M., West, E., Shea, L. D., Woodruff, T. K. Identification of a stage-specific permissive in vitro culture environment for follicle growth and oocyte development. Biology of Reproduction. 75, 916-923 (2006).
  10. Xu, M. Encapsulated Three-Dimensional Culture Supports Development of Nonhuman Primate Secondary Follicles. Biology of Reproduction. 81, 587-594 (2009).
  11. West, E. R., Shea, L. D., Woodruff, T. K. Engineering the follicle micro environment. Seminars in Reproductive Medicine. 25, 287-299 (2007).
  12. Xu, M., Kreeger, P. K., Shea, L. D., Woodruff, T. K. Tissue-engineered follicles produce live, fertile offspring. Tissue Engineering. 12, 2739-2746 (2006).
  13. Ebisch, I. M. W. Review of the role of the plasminogen activator system and vascular endothelial growth factor in subfertility. Fertility and Sterility. 90, 2340-2350 (2008).
check_url/it/2695?article_type=t

Play Video

Citazione di questo articolo
Shikanov, A., Xu, M., Woodruff, T. K., Shea, L. D. A Method for Ovarian Follicle Encapsulation and Culture in a Proteolytically Degradable 3 Dimensional System. J. Vis. Exp. (49), e2695, doi:10.3791/2695 (2011).

View Video