Summary

总结凝聚力测量组织表面Tensiometry

Published: April 08, 2011
doi:

Summary

我们描述的测量结合能源,作为组织的表面张力表达的方法,细胞内的三维组织状集合体之间。在组织表面张力的差异已经证明关联,肺,肌肉和脑肿瘤的侵袭,并建立不同类型的细胞之间的空间关系的基本决定因素。

Abstract

严格测量间的结合能只能使用接地系统中的热力学原理,在平衡的方法。我们已经开发出组织表面tensiometry(TST),专门用于测量表面的细胞之间相互作用的自由能。生物物理概念的基本尖沙咀此前已在详细的1,2描述。该方法是基于观察,细胞相互凝聚力,如果维持在振荡培养,会自发地聚集到集群。随着时间的推移,这些集群将全面形成球体。这四舍五入的行为模仿的液体系统的行为特征。细胞间的结合能测量压缩在定制设计的组织表面张力平行板之间的球形集合体。相同的数学方程,用来衡量一个液滴的表面张力是用来衡量组织的三维球形聚合表面张力。相当于液体的表面张力的细胞间的结合能,或更普遍的是,组织cohesivity。我们实验室以前的研究表明,组织的表面张力(1)预测两组胚胎干细胞如何将与另一1-5(2)可以强烈地影响着组织的能力与生物材料 6相互作用,(3)可以改变,不仅通过直接操纵的钙粘蛋白为基础 7间凝聚力,但也操纵关键的ECM分子如FN 8-11日和4)相关肺癌12 13,纤维肉瘤,脑肿瘤和前列腺肿瘤的侵袭潜力细胞系15。在这篇文章中,我们将描述仪器,细节产生球体所需的步骤,加载到张力腔的球体,启动总压缩,并组织产生的表面张力测量,分析和验证。

Protocol

1。总结筹备组织的表面张力的测量。 对于贴壁细胞,球体可以使用的悬滴法或产生一个连贯的表,然后将其削减到1毫米的碎片细胞形成。 总结形成悬滴法: 近融合的贴壁细胞培养应增长到90%汇合,届时单层应该用PBS漂洗两次。排水良好后,加入2毫升,0.05%胰蛋白酶1毫米EDTA(100毫米板块),并在37 ° C,直到细胞分离。停止加入2 MLS的完全培养?…

Discussion

尖沙咀总的凝聚力测量相对比较简单。有,但是,为了生成可用的尖沙咀数据,必须要掌握的关键步骤; 1)总量必须是“健康”。这可以确保聚合形成与细胞的最佳汇合前支队开始控制。骨料粒径和文化也必须加以控制,以尽量减少坏死核心内总的发展; 2)另一个影响尖沙咀测量的参数,可以是总的附着力程度上部或下部的压缩板。因此,聚甲基丙烯酸羟乙酯的最佳浓度,用于涂层板必须凭经验?…

Divulgazioni

The authors have nothing to disclose.

Materials

  • water bath/shaker (New Brunswick Scientific, Edison, NJ)
  • 10 ml round-bottom flasks (Belco, Vineland, NJ)

Riferimenti

  1. Foty, R. A., Forgacs, G., Pfleger, C. M., Steinberg, M. S. Liquid properties of embryonic tissues: Measurement of interfacial tensions. Phys Rev Lett. 72, 2298-2301 (1994).
  2. Foty, R. A., Pfleger, C. M., Forgacs, G., Steinberg, M. S. Surface tensions of embryonic tissues predict their mutual envelopment behavior. Development. 122, 1611-1620 (1996).
  3. Schotz, E. -. M. Quantitative differences in tissue surface tension influence zebrafish germ layer positioning. HFSP Journal. 2, 42-56 (2008).
  4. Jia, D., Dajusta, D., Foty, R. A. Tissue surface tensions guide in vitro self-assembly of rodent pancreatic islet cells. Dev Dyn. 236, 2039-2049 (2007).
  5. Schwarz, M. A., Zheng, H., Legan, S., Foty, R. A. Lung Self-Assembly is Modulated by Tissue Surface Tensions. Am J Respir Cell Mol Biol. , (2010).
  6. Ryan, P. L., Foty, R. A., Kohn, J., Steinberg, M. S. Tissue spreading on implantable substrates is a competitive outcome of cell-cell vs. cell-substratum adhesivity. Proc Natl Acad Sci U S A. 98, 4323-4327 (2001).
  7. Foty, R. A., Steinberg, M. S. The differential adhesion hypothesis: a direct evaluation. Dev Biol. 278, 255-263 (2005).
  8. Robinson, E. E., Foty, R. A., Corbett, S. A. Fibronectin matrix assembly regulates alpha5beta1-mediated cell cohesion. Mol Biol Cell. 15, 973-981 (2004).
  9. Robinson, E. E., Zazzali, K. M., Corbett, S. A., Foty, R. A. alpha5beta1 integrin mediates strong tissue cohesion. J Cell Sci. 116, 377-386 (2003).
  10. Winters, B. S., Raj, B. K., Robinson, E. E., Foty, R. A., Corbett, S. A. Three-dimensional culture regulates Raf-1 expression to modulate fibronectin matrix assembly. Mol Biol Cell. 17, 3386-3396 (2006).
  11. Caicedo-Carvajal, C. E., Shinbrot, T., Foty, R. A. Alpha5beta1 integrin-fibronectin interactions specify liquid to solid phase transition of 3D cellular aggregates. PLoS One. 5, e11830-e11830 (2010).
  12. Foty, R. A., Steinberg, M. S. Measurement of tumor cell cohesion and suppression of invasion by E- or P-cadherin. Cancer Res. 57, 5033-5036 (1997).
  13. Foty, R. A., Corbett, S. A., Schwarzbauer, J. E., Steinberg, M. S. Dexamethasone up-regulates cadherin expression and cohesion of HT-1080 human fibrosarcoma cells. Cancer Res. 58, 3586-3589 (1998).
  14. Winters, B. S., Shepard, S. R., Foty, R. A. Biophysical measurement of brain tumor cohesion. Int J Cancer. 114, 371-379 (2005).
  15. Foty, R. A., Cummings, K. B., Ward, S. Tissue surface tensiometry: a novel technique for predicting invasive potential of prostate tumors based on tumor cell aggregate cohesivity in vitro. Surgical Forum L. , 707-708 (1999).
  16. Folkman, J., Moscona, A. Role of cell shape in growth control. Nature. 273, 345-349 (1978).
  17. Foty, R. A., Forgacs, G., Pfleger, C. M., Steinberg, M. S. Liquid properties of embryonic tissues: Measurement of interfacial tensions. Physical Review Letters. 72, 2298-2301 (1994).
  18. Guevorkian, K., Colbert, M. J., Durth, M., Dufour, S., Brochard-Wyart, F. Aspiration of biological viscoelastic drops. Phys Rev Lett. 104, 218101-218101 (2010).
check_url/it/2739?article_type=t

Play Video

Citazione di questo articolo
Butler, C. M., Foty, R. A. Measurement of Aggregate Cohesion by Tissue Surface Tensiometry. J. Vis. Exp. (50), e2739, doi:10.3791/2739 (2011).

View Video