Summary

椎管内针对肌萎缩性脊髓侧索硬化症和外伤性脊髓损伤颈腹角细胞移植

Published: September 18, 2011
doi:

Summary

神经前体移植是一种很有前途的战略,保护和/或更换丢失/功能失调颈椎膈运动神经元在脊髓损伤(SCI)和运动神经元症,肌萎缩边音硬化症(ALS)。我们提供了一个细胞传递到脊髓型颈椎病ALS和SCI的啮齿类动物模型腹角的协议。

Abstract

呼吸妥协由于膈运动神经元的损失是一个衰弱的后果了大量人力外伤性脊髓损伤(SCI)的例1的比例,是与运动神经元症,肌萎缩硬化症(ALS)2支管患者死亡的最终原因。

ALS是一种破坏性的神经系统疾病的特点是较快的上下运动神经元的变性。屈服于平均2-5年的疾病的患者最终因呼吸麻痹由于膈运动神经元膜片3 innnervation损失的诊断。绝大多数情况下是零星的,而10%的家族形式。大约二十%的家族性病例是在21号染色体 4铜/锌超氧化物歧化酶1(SOD1)基因点突变。转基因小鼠4,56大鼠携带突变人类的SOD1基因(G93A,G37R,G86R,G85R)已经产生,并且,尽管存在着其他的动物模型运动神经元的损失,目前该疾病的最高度使用的模型。

脊髓损伤(SCI)是一个异构的条件,造成身体创伤,脊髓功能的结果,根据不同的类型,位置和严重程度的伤害 7 。然而,大约一半人类脊髓损伤病例的影响颈椎的地区,导致呼吸功能障碍衰弱由于膈运动神经元的损失和伤害的降bulbospinal呼吸轴突1。已开发的脊髓损伤动物模型,最常用的和临床相关挫伤8。

各种类的神经前体细胞(NPC的)移植是治疗外伤性中枢神经系统损伤和神经退行性疾病,包括ALS和SCI的一种很有前途的治疗策略,因为更换丢失或功能失调性中枢神经系统的细胞类型,提供神经保护作用的能力,并提供基因因素9利益。

ALS和SCI的动物模型,可以模拟许多这些疾病的临床相关的各个方面,包括膈运动神经元的损失和由此产生的呼吸妥协10,11。为了评估全国人民代表大会为基础的战略,在ALS和SCI这些动物模型的呼吸功能的疗效,必须专门针对蜂窝干预含有治疗膈运动神经元等有关目标的地区。我们提供一个详细的协议为多节段椎管内的NPC移植到颈椎脊髓腹侧灰质神经退行性型号如SOD1的G93A小鼠和大鼠,以及脊髓损伤大鼠和小鼠11。

Protocol

方法 1。细胞制备作为一个例子,我们将介绍的程序编制胶质祖细胞移植,因为我们的经验与此类型的细胞12。然而,该协议的细节,包括中型和胰蛋白酶的使用,例如,将依赖于特定的细胞用于移植的类型。 所有的解决方案前温37.0 ° C的水洗澡。 的HBSS冲洗烧瓶2X。添加5.0 0.05%胰蛋白酶/ EDTA mL/T-75烧瓶。在37.0 ° C培养箱中孵育3分钟烧…

Discussion

研究涉及的SOD1 G93A小鼠和大鼠,年龄和性别匹配的一组内的动物,和分发不同群体的同一窝内的动物。最好是使用ALS和SCI模型相同性别的所有动物,因为疾病的进程可能男性和女性之间有所不同,但是,它也可能是有用的男女双方有足够的动物,以检测出可能特定性别的影响,这一现象已报道G93A SOD1的老鼠13G93A SOD1的老鼠14,15。考虑细胞移植到动物的年?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

我想感谢:莱波雷的所有成员,Maragakis和罗斯坦有益的讨论实验室;美国和克雷格H.尼尔森基金会拨款瘫痪退伍军人。

Materials

Name of reagent Company Catalog number
HBSS Gibco 14170
0.05% Trypsin Gibco 25300
Soybean Trypsin Inhibitor (optional) Sigma T-6522
Acepromazine maleate (0.7 mg/kg) Fermenta Animal Health  
Ketamine (95 mg/kg) Fort Dodge Animal Health  
Xylazine (10 mg/kg) Bayer  
#11 Feather surgical blade Electron Microscopy Sciences 72044-11
Cotton-tipped applicators (6 inch) Fisher 23-400-101
Rat-toothed forceps Fine Science Tools Rat: 11023-15;
Mouse: 11042-08
Medium-sized spring scissors Fine Science Tools 15012-12
Mini spring scissors Fine Science Tools 15000-10
Rongeur Fine Science Tools Rat: 16121-14;
Mouse: 16221-14
Microknife Fine Science Tools 10056-12
Needle holders Fine Science Tools 12502-14
Suture: 4-0 Vicryl S-183
Staples: 9 mm Autoclip 427631
Stapler: 9 mm (Reflex #203-1000) World Precision Instruments 5000344
Warm water pump (T/Pump) Gaymar P/N 07999-000
Cyclosporin A: 250.0 mg/5.0 mL ampules Novartis/Sandimmune NDC 0078-0109-01
FK-506 LC Laboratories F-4900
Rapamycin LC Laboratories R-5000
Injector World Precision Instruments UMP2
Micro 4 Microsyringe Pump Controller World Precision Instruments UMC4
Micromanipulator World Precision Instruments Kite-R
10.0 μL Hamilton syringe Hamilton 80030
Hamilton needles: 33-gauge, 45° bevel, 1 inch Hamilton 7803-05
Glass 20.0 μL microcapillary pipettes (optional) Kimble 71900-20

Riferimenti

  1. Lane, M. A., Fuller, D. D., White, T. E. Respiratory recovery following high cervical hemisection. Trends in neurosciences. 31, 538-538 (2008).
  2. Kaplan, L. M., Hollander, D. Respiratory dysfunction in amyotrophic lateral sclerosis. Clin. Chest. Med. 15, 675-675 (1994).
  3. Miller, R. G., Rosenberg, J. A., Gelinas, D. F. Practice parameter: the care of the patient with amyotrophic lateral sclerosis (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology: ALS Practice Parameters Task Force. Neurology. 52, 1311-1323 (1999).
  4. Mitsumoto, H., Chad, D. A., Pioro, E. P., Davis, F. A. . Amyotrophic lateral sclerosis. , (1998).
  5. Tandan, R., Bradley, W. G. Amyotrophic leteral sclerosis: Part 2. Etiopathogenesis. Annals of neurology. 18, 419-419 (1985).
  6. Bruijn, L. I., Miller, T. M., Cleveland, D. W. Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci. 27, 723-723 (2004).
  7. Rosen, D. R., Siddique, T., Patterson, D. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 362, 59-59 (1993).
  8. Bruijn, L. I., Becher, M. W., Lee, M. K. ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron. 18, 327-327 (1997).
  9. Gurney, M. E., Pu, H., Chiu, A. Y. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science. 264, 1772-1775 (1994).
  10. Howland, D. S., Liu, J., She, Y. Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc Natl Acad Sci. 99, 1604-1604 (2002).
  11. Nagai, M., Aoki, M., Miyoshi, I. Rats expressing human cytosolic copper-zinc superoxide dismutase transgenes with amyotrophic lateral sclerosis: associated mutations develop motor neuron disease. J. Neurosci. 21, 9246-9246 (2001).
  12. McDonald, W., Becker, D. Spinal cord injury: promising interventions and realistic goals. Am. J. Phys. Med. Rehabi. I82, S38-S38 (2003).
  13. Sandrow-Feinberg, H. R., Zhukareva, V., Santi, L. PEGylated interferon-beta modulates the acute inflammatory response and recovery when combined with forced exercise following cervical spinal contusion injury. Experimental neurology. 223, 439-451 (2010).
  14. Gage, F. H. Mammalian neural stem cells. Science. 287, 1433-1433 (2000).
  15. Lane, M. A., Lee, K. Z., Fuller, D. D. Spinal circuitry and respiratory recovery following spinal cord injury. Respiratory physiology & neurobiology. 169, 123-123 (2009).
  16. Lepore, A. C., Rauck, B., Dejea, C. Focal transplantation-based astrocyte replacement is neuroprotective in a model of motor neuron disease. Nature. 11, 1294-1294 (2008).
  17. Rao, M. S. Multipotent and Restricted Precursors in the Central Nervous System. Anat Rec. 257, 137-137 (1999).
  18. Rao, M. S., Mayer-Proschel, M. Glial- restricted precursors are derived from multipotent neuroepithelial stem cells. Dev Biol. 188, 48-48 (1997).
  19. Suzuki, M., Tork, C., Shelley, B. Sexual dimorphism in disease onset and progression of a rat model of ALS. Sexual dimorphism in disease onset and progression of a rat model of ALS. Amyotroph Lateral Scler. 8, 20-20 (2007).
  20. Lepore, A. C., Haenggeli, C., Gasmi, M. Intraparenchymal spinal cord delivery of adeno-associated virus IGF-1 is protective in the SOD1G93A model of ALS. Brain research. 1185, 256-256 (2007).
  21. Veldink, J. H., Bar, P. R., Joosten, E. A. Sexual differences in onset of disease and response to exercise in a transgenic model of ALS. Neuromuscul Disord. 13, 737-737 (2003).
  22. Shumsky, J. S., Lepore, A. C. Transplantation of Neuronal and Glial Restricted Precursors into Contused Spinal Cord Improves Bladder and Motor Functions, Decreases Thermal Hypersensitivity, and Modifies Intraspinal Circuitry. J. Neurosci. 25, 9624-9624 (2005).
check_url/it/3069?article_type=t

Play Video

Citazione di questo articolo
Lepore, A. C. Intraspinal Cell Transplantation for Targeting Cervical Ventral Horn in Amyotrophic Lateral Sclerosis and Traumatic Spinal Cord Injury. J. Vis. Exp. (55), e3069, doi:10.3791/3069 (2011).

View Video