Summary

调查的意识到,不知道用功能磁共振成像的恐惧记忆的神经机制

Published: October 06, 2011
doi:

Summary

描述的方法进行调查知道和不知道的记忆过程的神经机制,支持在恐惧条件。这种方法监测血氧水平依赖(BOLD)的功能磁共振成像,皮肤电导反应,和无条件刺激的预期,在巴甫洛夫恐惧的调节,以评估鲜明的记忆过程的神经关联。

Abstract

巴甫洛夫担心空调往往是结合使用功能磁共振成像(fMRI)技术,在人类联想学习1-5的神经基础研究。在这些研究中,重要的是要提供空调的行为的证据,以验证是学习相关的,与人类行为相关的大脑活动的差异。

恐惧条件的研究往往监察植物神经反应(如皮肤电导反应; SCR)作为学习和记忆 6-8的索引。此外,其他行为的措施,可以提供有价值的信息关注学习过程和/或其他认知功能的影响空调。例如,影响无条件刺激(UCS)的预期有上表达的条件反应(CR)和无条件反应(UCR)数9-14最近的研究已经在一个感兴趣的话题。 SCR和UCS预期措施最近已与功能磁共振成像结合调查知道和不知道害怕学习和记忆过程15的神经基础。虽然这些认知过程可以评估在一定程度以下的空调会议,评估后空调不能衡量审判试行的期望和易受干扰和遗忘,以及其他因素,可能会扭曲结果16,17

自主和行为反应,同时监测功能磁共振成像提供了一个调解的认知过程和行为/植物神经反应之间的复杂关系的神经基板可以评估机制。然而,在MRI环境监测的自主和行为反应,对一些实际问题。具体来说,1)标准的行为和生理监测设备是构建有色金属材料,可以不被安全地附近的磁共振成像扫描仪,2使用)时,此设备是以外的磁共振扫描室放置,投射到主体的电缆可以进行射频噪声,文物在脑图像,3)文物可产生皮肤内的电导信号开关在扫描过程中,4梯度)的行为反应的电机要求所产生的fMRI信号,可能需要从活动区别开来,涉及到利益的认知过程。这些问题都可以解决与生理监测设备的安装和额外的数据分析程序进行修改。在这里,我们提出了一个方法同时监测在功能磁共振成像的自主和行为反应,并证明这些方法的使用调查期间恐惧制约知道和不知道的记忆过程。

Protocol

1。心理生理学 BIOPAC系统,旗下的生理监测系统(参见具体设备表),非标设备在大多数成像设施。附表15-30分钟参与者的到来之前设立的生理监测和本议定书中所描述的其他设备(图1)。 连接控制室的电脑操作系统AcqKnowledge(BIOPAC系统公司)生理监测软件使用标准的以太网交叉电缆(CBLETH2)BIOPAC MP150(MP150WSW)。 BIOPAC隔离数字接口(STP100C)连接到控制?…

Discussion

这里描述的恐惧调理方法调查知道和不知道的恐惧记忆过程的神经机制提供了一种手段。这种方法需要的行为,植物神经和fMRI数据的同步监测的优势。监测行为(即UCS的预期)和植物神经反应(即可控硅)是这种方法的关键组成部分。 UCS的预期提供了一种手段,以评估应变意识,而SCR CR的表达提供了一个指数。总之,这些行为和植物神经反应,可用于在超阈CS +和CS试验演示调查恐惧条件和没有?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

阿拉巴马大学伯明翰学院发展资助计划提供支持。

Materials

Equipment Company Item number
Integrated Functional Imaging System (IFIS-SA) Invivo Corp., Orlando, FL  
Master Control Unit (located in the control room)
Peripheral Interface Unit (located in the MRI chamber)
Audio/Visual Display Unit (located in the MRI chamber), includes:
  • 6.4″ (diagonal) LCD video screen
    • 640 x 480 resolution and 15° field of view
  • acoustic interface box
    • delivers pneumatic sound in stereo
  • MR-compatible stereo headphones
   
PHYSIOLOGICAL MONITORING SYSTEM Biopac Systems, Inc., Goleta, CA  
Data Acquisition and Analysis System for Windows (MP150)
Isolated Digital Interface (Digital Interface)
Galvanic Skin Response (GSR) Amplifier

MRI Cable/Filter System to Transducer Amplifier set, includes:
  • MRI extension cable (Chamber to filter)
  • RF interference filter
  • MRI extension Cable (GSR amplifier to filter)
Additional components:
DB25 M/F ribbon cable
Disposable radiotranslucent electrodes
Carbon fiber leads
  MP150WSW
STP100C
EDA100C-MRI

MECMRI-TRANS

– MECMRI-1
– MRIRFIF
– MECMRI-3



CBL110C
EL508
LEAD108
JOYSTICK Current Designs, Inc., Philadelphia, PA  
Legacy Joystick   HH-JOY-4
Legacy fORP Interface   FIU-005

Riferimenti

  1. LaBar, K. S., Gatenby, J. C., Gore, J. C., LeDoux, J. E., Phelps, E. A. Human amygdala activation during conditioned fear acquisition and extinction: a mixed-trial fMRI study. Neuron. 20, 937-945 (1998).
  2. Buchel, C., Morris, J., Dolan, R. J., Friston, K. J. Brain systems mediating aversive conditioning: an event-related fMRI study. Neuron. 20, 947-957 (1998).
  3. Cheng, D. T., Knight, D. C., Smith, C. N., Stein, E. A., Helmstetter, F. J. Functional MRI of human amygdala activity during Pavlovian fear conditioning: stimulus processing versus response expression. Behav. Neurosci. 117, 3-10 (2003).
  4. Knight, D. C., Smith, C. N., Stein, E. A., Helmstetter, F. J. Functional MRI of human Pavlovian fear conditioning: patterns of activation as a function of learning. Neuroreport. 10, 3665-3670 (1999).
  5. Cheng, D. T., Knight, D. C., Smith, C. N., Helmstetter, F. J. Human amygdala activity during the expression of fear responses. Behav. Neurosci. 120, 1187-1195 (2006).
  6. Balderston, N. L., Helmstetter, F. J. Conditioning with masked stimuli affects the timecourse of skin conductance responses. Behav. Neurosci. 124, 478-489 (2010).
  7. Esteves, F., Parra, C., Dimberg, U., Ohman, A. Nonconscious associative learning: Pavlovian conditioning of skin conductance responses to masked fear-relevant facial stimuli. Psychophysiology. 31, 375-385 (1994).
  8. Cheng, D. T., Richards, J., Helmstetter, F. J. Activity in the human amygdala corresponds to early, rather than late period autonomic responses to a signal for shock. Learn. Mem. 14, 485-490 (2007).
  9. Knight, D. C., Nguyen, H. T., Bandettini, P. A. The role of the human amygdala in the production of conditioned fear responses. Neuroimage. 26, 1193-1200 (2005).
  10. Knight, D. C., Nguyen, H. T., Bandettini, P. A. The role of awareness in delay and trace fear conditioning in humans. Cogn. Affect. Behav. Neurosci. 6, 157-162 (2006).
  11. Schultz, D. H., Helmstetter, F. J. Classical conditioning of autonomic fear responses is independent of contingency awareness. J. Exp. Psychol. Anim. Behav. Process. 36, 495-500 (2010).
  12. Dunsmoor, J. E., Bandettini, P. A., Knight, D. C. Neural correlates of unconditioned response diminution during Pavlovian conditioning. Neuroimage. 40, 811-817 (2008).
  13. Katkin, E. S., Wiens, S., Ohman, A. Nonconscious fear conditioning, visceral perception, and the development of gut feelings. Psychol. Sci. 12, 366-370 (2001).
  14. Knight, D. C., Waters, N. S., King, M. K., Bandettini, P. A. Learning-related diminution of unconditioned SCR and fMRI signal responses. Neuroimage. 49, 843-848 (2010).
  15. Knight, D. C., Waters, N. S., Bandettini, P. A. Neural substrates of explicit and implicit fear memory. Neuroimage. 45, 208-214 (2009).
  16. Lovibond, P. F., Shanks, D. R. The role of awareness in Pavlovian conditioning: empirical evidence and theoretical implications. J. Exp. Psychol. Anim. Behav. Process. 28, 3-26 (2002).
  17. Hippocampus, . . 8, 620-626 (1998).
  18. Cox, R. W. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 29, 162-173 (1996).
  19. Knight, D. C., Nguyen, H. T., Bandettini, P. A. Expression of conditional fear with and without awareness. Proc. Natl. Acad. Sci. U. S. A. 100, 15280-15283 (2003).
  20. Bunce, S. C., Bernat, E., Wong, P. S., Shevrin, H. Further evidence for unconscious learning: preliminary support for the conditioning of facial EMG to subliminal stimuli. J. Psychiatr. Res. 33, 341-347 (1999).
  21. Kotze, H. F., Moller, A. T. Effect of auditory subliminal stimulation on GSR. Psychol. Rep. 67, 931-934 (1990).
  22. Miller, J. Threshold variability in subliminal perception experiments: fixed threshold estimates reduce power to detect subliminal effects. J. Exp. Psychol. Hum. Percept. Perform. 17, 841-851 (1991).
  23. Tabbert, K., Stark, R., Kirsch, P., Vaitl, D. Dissociation of neural responses and skin conductance reactions during fear conditioning with and without awareness of stimulus contingencies. Neuroimage. 32, 761-770 (2006).
check_url/it/3083?article_type=t

Play Video

Citazione di questo articolo
Knight, D. C., Wood, K. H. Investigating the Neural Mechanisms of Aware and Unaware Fear Memory with fMRI. J. Vis. Exp. (56), e3083, doi:10.3791/3083 (2011).

View Video