Summary

Preparation of Viral DNA from Nucleocapsids

Published: August 16, 2011
doi:

Summary

We describe the process of isolating high purity herpesvirus nucleocapsid DNA from infected cells. The final DNA captured from solution is of high concentration and purity, making it ideally suited for high-throughput sequencing, high fidelity PCR reactions, and transfections to produce new viral recombinants.

Abstract

Viruses are obligate cellular parasites, and thus the study of their DNA requires isolating viral material away from host cell contaminants and DNA. Several downstream applications require large quantities of pure viral DNA, which is provided by this protocol. These applications include viral genome sequencing, where the removal of host DNA is crucial to optimize data output for viral sequences, and the production of new viral recombinant strains, where co-transfection of purified plasmid and linear viral DNA facilitates recombination.1,2,3

This procedure utilizes a combination of extractions and density-based centrifugation to isolate purified linear herpesvirus nucleocapsid DNA from infected cells.4,5 The initial purification steps aim to isolate purified viral capsids, which contain and protect the viral DNA during the extractions and centrifugation steps that remove cellular proteins and DNA. Lysis of nucleocapsids then releases viral DNA, and two final phenol-chloroform steps remove remaining proteins. The final DNA captured from solution is highly concentrated and pure, with an average OD260/280 of 1.90. Depending on the quantity of infected cells used, yields of viral DNA range from 150-800 μg or more. The purity of this DNA makes it stable during long-term storage at 4C. This DNA is thus ideally suited for high-throughput sequencing, high fidelity PCR reactions, and transfections.

Prior to beginning the protocol, it is important to know the average number of cells per dish (e.g. an average of 8 x 106 PK-15 cells in a confluent 15 cm dish), and the titer of the viral stock to be used (e.g. 1 x 108 plaque-forming units per ml). These are necessary to calculate the appropriate multiplicity of infection (MOI) for the protocol.6 For instance, to infect one 15 cm dish of PK-15 cells with the above viral stock, at an MOI of 5, you would use 400 μl of viral stock and dilute it with 3.6 ml of medium (total inoculation volume of 4 ml for one 15 cm plate).

Multiple viral DNA preparations can be prepared at the same time. The number of simultaneous preparations is limited only by the number of tubes held by the ultracentrifuge rotor (one per virus; see step 3.9 below). Here we describe the procedure as though being done for one virus.

Protocol

1. First Day: Viral Infection and Preparation of Buffers Prepare 5-10 dishes (15 cm diameter) of tissue culture cells for infection, e.g. PK-15 cells for pseudorabies virus (PRV) or Vero cells for herpes simplex virus (HSV). When cells are 95 – 100% confluent, infect them at a (MOI) of 5-10. To do this, inoculate each plate using virus stock in a total volume of 4 ml per plate, then incubate the plates for 1 hour at 37°C. Rock plates gently every 15 minutes to ensure that the cell monolayer rema…

Discussion

Portions of this protocol were originally developed for viral DNA isolation in BSL4 conditions, but it adapts equally well to non-BSL conditions.4 We commonly use this protocol to isolate DNA from the alpha-herpesviruses PRV and HSV-1, which have DNA genomes enclosed in a proteinaceous capsid and surrounded by a lipid envelope.7,8 However it is likely directly adaptable to other large DNA viruses, including beta- and gamma-herpesviruses and adenoviruses. Similar extractions are commonly used for RNA…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

The authors appreciate the contributions of Greg Smith, Lisa Pomeranz, Matt Lyman, Marlies Eldridge, Halina Staniszewska Goraczniak, and members of the Enquist lab in fine-tuning this protocol.

Materials

Name of reagent Company Catalogue number Comments
Freon (1,1,2-trichloro-1,2,2-trifluoroethane) Fisher T178-4 Check with your institution for guidelines on appropriate disposal of Freon-containing waste, or see Mendez et al. for potential Freon alternatives.9
Phase lock gel tubes, Heavy 15ml capacity 5 PRIME 2302850 Optional
Polyallomer ultracentrifuge tubes Beckman* 331372* *Select tubes appropriate for your own ultracentrifuge; these are included as an example only
NP-40 / IGEPAL Sigma I-3021  
PK-15 cells ATCC CCL-33  
Vero cells ATCC CCL-81  
PBS HyClone SH30028.03  

Riferimenti

  1. Szpara, M. L., Parsons, L., Enquist, L. W. Sequence variability in clinical and laboratory isolates of herpes simplex virus 1 reveals new mutations. J Virol. 84, 5303-5313 (2010).
  2. Banfield, B. W., Kaufman, J. D., Randall, J. A., Pickard, G. E. Development of pseudorabies virus strains expressing red fluorescent proteins: new tools for multisynaptic labeling applications. J Virol. 77, 10106-10112 (2003).
  3. Kobiler, O., Lipman, Y., Therkelsen, K., Daubechies, I., Enquist, L. W. Herpesviruses carrying a Brainbow cassette reveal replication and expression of limited numbers of incoming genomes. Nat Commun. 1, 146-146 (2010).
  4. Enquist, L. W., Madden, M. J., Schiop-Stanley, P., Vande Woude, G. F. Cloning of herpes simplex type 1 DNA fragments in a bacteriophage lambda vector. Science. 203, 541-544 (1979).
  5. Smith, G. A., Enquist, L. W. Construction and transposon mutagenesis in Escherichia coli of a full-length infectious clone of pseudorabies virus, an alphaherpesvirus. J Virol. 73, 6405-6414 (1999).
  6. Flint, S. J., Enquist, L. W., Racaniello, V. R., Skalka, A. M. . Principles of virology. , (2008).
  7. Pomeranz, L. E., Reynolds, A. E., Hengartner, C. J. Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Microbiol Mol Biol Rev. 69, 462-500 (2005).
  8. Roizman, B., Pellett, P. E., Knipe, D. M., Howley, P. M. . Fields Virology. , 2381-2397 (2001).
  9. Mendez, I. I., Hermann, L. L., Hazelton, P. R., Coombs, K. M. A comparative analysis of freon substitutes in the purification of reovirus and calicivirus. J Virol Methods. 90, 59-67 (2000).
  10. Gharabaghi, F., Aymard, M., Trotemann, P., Gerdil, C. A rapid and simplified micromethod for subtyping varicella-zoster virus. J Med Virol. 31, 129-134 (1990).
  11. Granstedt, A. E., Szpara, M. L., Kuhn, B., Wang, S. S., Enquist, L. W. Fluorescence-based monitoring of in vivo neural activity using a circuit-tracing pseudorabies virus. PLoS One. 4, e6923-e6923 (2009).
check_url/it/3151?article_type=t

Play Video

Citazione di questo articolo
Szpara, M. L., Tafuri, Y. R., Enquist, L. W. Preparation of Viral DNA from Nucleocapsids. J. Vis. Exp. (54), e3151, doi:10.3791/3151 (2011).

View Video