Summary

प्रोटीन और सेल बन्दिश के लिए दो आयामी नमूनों Substrates बनाना

Published: September 06, 2011
doi:

Summary

स्व इकट्ठे monolayers (SAMs) सोने पर लंबी श्रृंखला alkane thiols गठन से अच्छी तरह से परिभाषित प्रोटीन पैटर्न और सेल कारावास के गठन के लिए substrates प्रदान करते हैं. Hexadecanethiol के microcontact मुद्रण polydimethylsiloxane (PDMS) के साथ backfilling बाद स्टांप का उपयोग कर एक glycol समाप्त alkane thiol monomer के एक पैटर्न का उत्पादन जहां प्रोटीन और कोशिकाओं को केवल मुद्रांकित hexadecanethiol क्षेत्र सोखना.

Abstract

Microcontact printing provides a rapid, highly reproducible method for the creation of well-defined patterned substrates.1 While microcontact printing can be employed to directly print a large number of molecules, including proteins,2 DNA,3 and silanes,4 the formation of self-assembled monolayers (SAMs) from long chain alkane thiols on gold provides a simple way to confine proteins and cells to specific patterns containing adhesive and resistant regions. This confinement can be used to control cell morphology and is useful for examining a variety of questions in protein and cell biology. Here, we describe a general method for the creation of well-defined protein patterns for cellular studies.5 This process involves three steps: the production of a patterned master using photolithography, the creation of a PDMS stamp, and microcontact printing of a gold-coated substrate. Once patterned, these cell culture substrates are capable of confining proteins and/or cells (primary cells or cell lines) to the pattern.

The use of self-assembled monolayer chemistry allows for precise control over the patterned protein/cell adhesive regions and non-adhesive regions; this cannot be achieved using direct protein stamping. Hexadecanethiol, the long chain alkane thiol used in the microcontact printing step, produces a hydrophobic surface that readily adsorbs protein from solution. The glycol-terminated thiol, used for backfilling the non-printed regions of the substrate, creates a monolayer that is resistant to protein adsorption and therefore cell growth.6 These thiol monomers produce highly structured monolayers that precisely define regions of the substrate that can support protein adsorption and cell growth. As a result, these substrates are useful for a wide variety of applications from the study of intercellular behavior7 to the creation of microelectronics.8

While other types of monolayer chemistry have been used for cell culture studies, including work from our group using trichlorosilanes to create patterns directly on glass substrates,9 patterned monolayers formed from alkane thiols on gold are straight-forward to prepare. Moreover, the monomers used for monolayer preparation are commercially available, stable, and do not require storage or handling under inert atmosphere. Patterned substrates prepared from alkane thiols can also be recycled and reused several times, maintaining cell confinement.10

Protocol

1. नमूनों की तैयारी मास्टर (चित्र 1) केंद्र स्पिन coater पर सिलिकॉन वफ़र और एसीटोन के साथ तालिका 1 में दो चक्र स्पिन कार्यक्रम के प्रारंभिक चरण के दौरान वफ़र कुल्ला. एसीटोन स्पिन एक साफ, सूखे वफ़र छोड़ने का…

Discussion

PDMS स्टांप निर्माण के लिए इस्तेमाल किया मास्टर के lithographic उत्पादन में मुद्दों का एक नंबर पैदा कर सकते हैं. अपूर्ण फोटो अस्पष्ट और अस्पष्ट पैटर्न और विरोध में लिपटे बढ़े या लापता सुविधाओं में वफ़र परिणामों …

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

हम वाशिंगटन विश्वविद्यालय जिसका सामूहिक ज्ञान के इस प्रोटोकॉल संभव बनाया है में पूरे Maurer समूह स्वीकार करना चाहते हैं. मानसिक स्वास्थ्य के राष्ट्रीय संस्थान (1R01MH085495) द्वारा इस कार्य के लिए अनुदान उपलब्ध कराया जाता है.

Materials

Name of the reagent Company Catalogue number Comments (optional)
Silicon wafer Wafer Reclaim Services   2 inch
Spin coater/hot plate Brewer Science Cee 200CB Spin-Bake System  
AZ9245 Photoresist Mays Chemical Company 105880034-1160  
Direct-write photolithography system Microtech s.r.l. LW325 LaserWriter System  
Mask Aligner HTG 3HR  
AZ 400K Developer Mays Chemical Company 105880018-1160  
Sylgard 182 Silicone Elastomer Kit Dow Corning    
25 mm no. 1 round glass coverslips VWR 16004-310  
Plasma Oxidizer Diener Femto  
Titanium pieces Kamis Incorporated   99.95% pure
Gold pellets Kamis Incorporated   99.999% pure
Electron-beam evaporator Kurt J. Lesker PVD 75 Thin Film Deposition System with electron-beam accessory
Hexadecanethiol Alfa Aesar A11362  
1-mercaptoundec-11-yl)tetra(ethyleneglycol) Sigma Aldrich 674508  
Ethanol Pharmco-aaper 111000200 200 proof, absolute
Parafilm VWR 52858-000  
DPBS VWR 4500-434 Without calcium and magnesium
Mouse Laminin I VWR 95036-762  
Human Plasma Fibronectin Invitrogen 33016-015  
AlexaFluor® 647 carboxylic acid, succinimidyl ester Invitrogen A-20006  
MitoTracker Red 580 Invitrogen M22425  
AlexaFluor® 350 carboxylic acid, succinimidyl ester Invitrogen A-10168  
Anti-laminin antibody Fisher Scientific AB2034MI  

Riferimenti

  1. Wilbur, J., Kumar, A., Biebuyck, H., Kim, E., Whitesides, G. Microcontact printing of self-assembled monolayers: Applications in microfabrication. Nanotechnology. 7, 452-457 (1996).
  2. Chang, J., Brewer, G., Wheeler, B. A modified microstamping technique enhances polylysine transfer and neuronal cell patterning. Biomaterials. 24, 2863-2870 (2003).
  3. Lange, S., Benes, V., Kern, D., Horber, J., Bernard, A. Microcontact printing of DNA molecules. Analytical Chemistry. , 1641-1647 (2004).
  4. Xia, Y., Mrksich, M., Kim, E., Whitesides, G. Microcontact printing of octadecylsiloxane on the surface of silicon dioxide and its application in microfabrication. J. Am. Chem. Soc. , 9576-9577 (1995).
  5. Mrksich, M., Dike, L., Tien, J., Ingber, D., Whitesides, G. Using microcontact printing to pattern the attachment of mammalian cells to self-assembled monolayers of alkanethiolates on transparent films of gold and silver. Experimental Cell Research. , 305-313 (1997).
  6. Prime, K. L., Whitesides, G. M. Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide) – a model system using self-assembled monolayers. J. Am. Chem. Soc. 115, 10714-10721 (1993).
  7. Raghavan, S., Desai, R., Kwon, Y., Mrksich, M., Chen, C. Micropatterned Dynamically Adhesive Substrates for Cell Migration. Langmuir. , 17733-17738 (2010).
  8. Rogers, J., Bao, Z., Baldwin, K., Dodabalapur, A., Crone, B., Raju, V. R., Kuck, V., Katz, H., Amundson, K., Ewing, J. Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc Natl Acad Sci U S A. 98, 4835-4840 (2001).
  9. Yanker, D., Maurer, J. Direct printing of trichlorosilanes on glass for selective protein adsorption and cell growth. Molecular Biosystems. 4, 502-504 (2008).
  10. Johnson, D., Maurer, J. Recycling and reusing patterned self-assembled monolayers for cell culture. Chemical Communications. , 520-522 (2011).
  11. Herne, T., Tarlov, M. Characterization of DNA probes immobilized on gold surfaces. J. Am. Chem. Soc. , 8916-8920 (1997).
  12. Hanson, E., Schwartz, J., Nickel, B., Koch, N., Danisman, M. Bonding self-assembled, compact organophosphonate monolayers to the native oxide surface of silicon. J. Am. Chem. Soc. , 16074-16080 (2003).
  13. Johannes, M., Cole, D., Clark, R. Atomic force microscope based nanofabrication of master pattern molds for use in soft lithography. Applied Physics Letters. , (2007).
  14. Bessueille, F., Pla-Roca, M., Mills, C. A., Martinez, E., Samitier, J., Errachid, A. Submerged microcontact printing (SμCP): An unconventional printing technique of thiols using high aspect ratio, elastomeric stamps. Langmuir. , 12060-12063 (2005).
  15. Xia, Y., Whitesides, G. Extending microcontact printing as a microlithographic technique. Langmuir. , 2059-2067 (1997).
  16. Biasco, A., Pisignano, D., Krebs, B., Pompa, P. P., Persano, L., Cingolani, R., Rinaldi, R. Conformation of microcontact-printed proteins by atomic force miroscopy molecular sizing. Langmuir. , 5154-5158 (2005).
  17. Shen, K., Qi, J., Kam, L. C. Microcontact printing of proteins for cell biology. J Vis Exp. (22), e1065-e1065 (2008).
  18. Piner, R., Zhu, J., Xu, F., Hong, S., Mirkin, C. “Dip-pen” nanolithography. Science. 283, 661-663 (1999).
  19. Ryan, D., Parviz, B. A., Linder, V., Semetey, V., Sia, S. K., Su, J., Mrksich, M., Whitesides, G. M. Patterning multiple aligned self-assembled monolayers using light. Langmuir. , 9080-9088 (2004).
check_url/it/3164?article_type=t

Play Video

Citazione di questo articolo
Johnson, D. M., LaFranzo, N. A., Maurer, J. A. Creating Two-Dimensional Patterned Substrates for Protein and Cell Confinement. J. Vis. Exp. (55), e3164, doi:10.3791/3164 (2011).

View Video