Summary

粘附频率含量为原位跨交界的分子相互作用,在细胞与细胞界面的动力学分析

Published: November 02, 2011
doi:

Summary

粘附频率检测,用于测量当两个分子相互作用的细胞表面锚定受体 – 配体相互作用的动力学描述。使用一个微管加压作为粘附传感器的人体红血细胞和整合αLβ2和细胞间粘附分子-1受体和配体相互作用,这种机械为基础的检测例证。

Abstract

微管黏附实验是在1998年开发的,衡量的二维(2D)受体-配体结合动力学。检测使用传感器粘附细胞相互作用的分子之一,并提出一个人的红细胞(RBC)的。它采用显微操作与另一个细胞的表达与精确控制的区域和时间,使债券形成的其他相互作用的分子接触,使红细胞。红细胞伸长后发现,除了拉动两个细胞黏附事件。通过控制固定的红细胞表面上的配体的密度,粘连的概率保持在0和1之间的中档。粘连的概率估计在两个细胞之间的一个给定的接触时间的反复接触,周期序列的粘附事件的频率。不同的接触时间,产生一个具有约束力的曲线。拟合概率模型的结合受体-配体反应动力学1曲线返回2D的亲和力和关闭率。

该试剂盒已通过验证,使用与IgG的Fc 1-6,选择素与糖缀合物的体6-9,与体10-13 homotypical cadherin 约束力14,T细胞受体与辅助受体肽主要组织相容性复合物15整合Fcγ 受体的相互作用- 19。

该方法已用于生物物理因素,如膜microtopology 5,膜锚2,分子取向和长度为6,承运人刚度9,曲率20,和撞击力20,以及生化因素,量化的二维动力学的规定,如调制的骨架和膜的微环境相互作用的分子, 这些分子表面,15,17,19组织。

该方法也被用来吨Ø研究并发约束力的双种受体-配体3,4,19三分子相互作用使用修改后的模型 21 。

该方法的主要优点是,它允许在他们的母语膜环境受体的研究。结果可能会非常不同,从获得使用纯化的受体 17 。它还允许在时间分辨率,远远超出了典型的生化方法分一秒的时间尺度的受体 – 配体相互作用的研究。

要说明的微量粘附频率的方法,我们动力学测量间粘附分子-1(ICAM – 1)红细胞约束力的解决方案中的E -选择与二聚体的中性粒细胞激活α大号β2整合素α大号β2功能。

Protocol

1。从全血红细胞隔离准备EAS – 45解决方案。重达从表一的所有成分,并溶于DI水100 200毫升。加水使千毫升解决方案,并调整pH值至8.0。过滤和分装50毫升。冻结储存在-20 ° C。 注:作为一名护士,应当由受过训练的医疗专业等步骤1.2机构审查委员会批准的协议,。 绘制成10毫升含有EDTA管中位数肘静脉3血5毫升,轻轻混匀血用EDTA,立即?…

Discussion

要成功使用微管粘附频率检测应考虑的几个关键步骤。首先,确保记录的具体利益的受体 – 配体系统的相互作用。非特异性控制测量(参见图3,4)保证的特殊性。理想的情况下,非特异性黏附概率应低于0.05,对所有接触的时间段,每个时间点之间的特异性和非特异性黏附概率有显著差异。不同的方法可以用来夫妇的红细胞表面的配体。结果表明,氯化铬耦合方法17了非特异性结合的生物…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项研究是由NIH的拨款R01HL091020,R01HL093723,R01AI077343,并R01GM096187支持。

Materials

Name of the reagent Company Catalogue # Comments
10x PBS BioWhittaker

17-517Q

Dilute to 1x with deionized water prior to use
Vacutainer EDTA BD 366643 RBCs isolation
10ML PK100      
Histopaque 1077 Sigma-Aldrich 10771 RBCs isolation
Adenine Sigma-Aldrich A2786 EAS-45 preparation
D-glucose (dextrose) Sigma-Aldrich G7528 EAS-45 preparation
D-Mannitol Sigma-Aldrich 6360 EAS-45 preparation
Sodium Chloride (NaCl) Sigma-Aldrich S7653 EAS-45 preparation
Sodium Phosphate, Dibasic (NaHPO) Fisher Scientific S374 EAS-45 preparation
L-glutamine Sigma-Aldrich G5763 EAS-45 preparation
Biotin-X-NHS Calbiochem 203188 RBCs biotinylation
Dimethylformamide (DMF) Thermo Scientific 20673 RBCs biotinylation
Borate Buffer (0.1M) Electron Microscopy Sciences 11455-90 RBCs biotinylation
Streptavidin Thermo Scientific 21125 Ligand functionalizing
BSA Sigma-Aldrich A0336 Ligand functionalizing
Quantibrite PE Beads BD Biosciences 340495 Density quantification
Flow cytometer BD Immunocytometry Systems

BD LSR II

Density quantification

Capillary Tube

0.7-1.0mm x 30"
Kimble Glass Inc. 46485-1 Micropipette pulling
Mineral Oil Fisher Scientific BP2629-1 Chamber assembly
Microscope Cover Glass Fisher Scientific 12-544-G Chamber assembly

PE α-human CD11a

Clone HI 111
eBioscience 12-0119-71 Reagent for Fig.1
PE anti-human CD54 eBioscience 12-0549 Reagent for Fig.1
Mouse IgG1 Isotype Control PE eBioscience 12-4714 Reagent for Fig.1
hydraulic micromanipulator Narishige MO-303 Micropipette system
Mechanical manipulator Newport 461-xyz-m, SM-13, DM-13 Micropipette system
piezoelectric translator Physik Instrumente P-840 Micropipette system
LabVIEW National Instruments Version 8.6 Micropipette system
DAQ board National Instruments USB-6008 Micropipette system
Optical table Kinetics Systems 5200 Series Micropipette system

Riferimenti

  1. Chesla, S. E., Selvaraj, P., Zhu, C. Measuring two-dimensional receptor-ligand binding kinetics by micropipette. Biophys. J. 75, 1553-1572 (1998).
  2. Chesla, S. E., Li, P., Nagarajan, S., Selvaraj, P., Zhu, C. The membrane anchor influences ligand binding two-dimensional kinetic rates and three-dimensional affinity of FcgammaRIII (CD16). J. Biol. Chem. 275, 10235-10246 (2000).
  3. Williams, T. E., Nagarajan, S., Selvaraj, P., Zhu, C. Concurrent and independent binding of Fcgamma receptors IIa and IIIb to surface-bound IgG. Biophys. J. 79, 1867-1875 (2000).
  4. Williams, T. E., Selvaraj, P., Zhu, C. Concurrent binding to multiple ligands: kinetic rates of CD16b for membrane-bound IgG1 and IgG2. Biophys. J. 79, 1858-1866 (2000).
  5. Williams, T. E., Nagarajan, S., Selvaraj, P., Zhu, C. Quantifying the impact of membrane microtopology on effective two-dimensional affinity. J. Biol. Chem. 276, 13283-13288 (2001).
  6. Huang, J. Quantifying the effects of molecular orientation and length on two-dimensional receptor-ligand binding kinetics. J. Biol. Chem. 279, 44915-44923 (2004).
  7. Long, M., Zhao, H., Huang, K. S., Zhu, C. Kinetic measurements of cell surface E-selectin/carbohydrate ligand interactions. Ann. Biomed. Eng. 29, 935-946 (2001).
  8. Chen, W., Evans, E. A., McEver, R. P., Zhu, C. Monitoring receptor-ligand interactions between surfaces by thermal fluctuations. Biophys. J. 94, 694-701 (2008).
  9. Wu, L. Impact of carrier stiffness and microtopology on two-dimensional kinetics of P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) interactions. J. Biol. Chem. 282, 9846-9854 (2007).
  10. Waugh, R. E., Lomakina, E. B. Active site formation, not bond kinetics, limits adhesion rate between human neutrophils and immobilized vascular cell adhesion molecule 1. Biophys. J. 96, 268-275 (2009).
  11. Zhang, F. Two-dimensional kinetics regulation of alphaLbeta2-ICAM-1 interaction by conformational changes of the alphaL-inserted domain. J. Biol. Chem. 280, 42207-42218 (2005).
  12. Lomakina, E. B., Waugh, R. E. Adhesion between human neutrophils and immobilized endothelial ligand vascular cell adhesion molecule 1: divalent ion effects. Biophys. J. 96, 276-284 (2009).
  13. Chen, W., Lou, J., Zhu, C. Forcing switch from short- to intermediate- and long-lived states of the alphaA domain generates LFA-1/ICAM-1 catch bonds. J. Biol. Chem. 285, 35967-35978 (2010).
  14. Chien, Y. H. Two stage cadherin kinetics require multiple extracellular domains but not the cytoplasmic region. J. Biol. Chem. 283, 1848-1856 (2008).
  15. Huang, J., Edwards, L. J., Evavold, B. D., Zhu, C. Kinetics of MHC-CD8 interaction at the T cell membrane. J. Immunol. 179, 7653-7662 (2007).
  16. Wasserman, H. A. MHC variant peptide-mediated anergy of encephalitogenic T cells requires SHP-1. J. Immunol. 181, 6843-6849 (2008).
  17. Huang, J. The kinetics of two-dimensional TCR and pMHC interactions determine T-cell responsiveness. Nature. 464, 932-936 .
  18. Sabatino, J. J., Huang, J., Zhu, C., Evavold, B. D. High prevalence of low affinity peptide-MHC II tetramer-negative effectors during polyclonal CD4+ T cell responses. J. Exp. Med. 208, 81-90 (2011).
  19. Jiang, N. Two-stage cooperative T cell receptor-peptide major histocompatibility complex-CD8 trimolecular interactions amplify antigen discrimination. Immunity. 34, 13-23 (2011).
  20. Spillmann, C. M., Lomakina, E., Waugh, R. E. Neutrophil adhesive contact dependence on impingement force. Biophys. J. 87, 4237-4245 (2004).
  21. Zhu, C., Williams, T. E. Modeling concurrent binding of multiple molecular species in cell adhesion. Biophys. J. 79, 1850-1857 (2000).
  22. Downey, G. P. Retention of leukocytes in capillaries: role of cell size and deformability. J. Appl. Physiol. 69, 1767-1778 (1990).
  23. Li, P. Affinity and kinetic analysis of Fcgamma receptor IIIa (CD16a) binding to IgG ligands. J. Biol. Chem. 282, 6210-6221 (2007).
  24. Chen, W., Zarnitsyna, V. I., Sarangapani, K. K., Huang, J., Zhu, C. Measuring Receptor-Ligand Binding Kinetics on Cell Surfaces: From Adhesion Frequency to Thermal Fluctuation Methods. Cell. Mol. Bioeng. 1, 276-288 (2008).
  25. Thoumine, O., Kocian, P., Kottelat, A., Meister, J. J. Short-term binding of fibroblasts to fibronectin: optical tweezers experiments and probabilistic analysis. Eur. Biophys. J. 29, 398-408 (2000).
  26. Ounkomol, C., Xie, H., Dayton, P. A., Heinrich, V. Versatile horizontal force probe for mechanical tests on pipette-held cells, particles, and membrane capsules. Biophys. J. 96, 1218-1231 (2009).
  27. Piper, J. W., Swerlick, R. A., Zhu, C. Determining force dependence of two-dimensional receptor-ligand binding affinity by centrifugation. Biophys. J. 74, 492-513 (1998).
  28. Li, P., Selvaraj, P., Zhu, C. Analysis of competition binding between soluble and membrane-bound ligands for cell surface receptors. Biophys. J. 77, 3394-3406 (1999).
  29. Long, M. Probabilistic modeling of rosette formation. Biophys. J. 91, 352-363 (2006).
  30. Lou, J. Flow-enhanced adhesion regulated by a selectin interdomain hinge. J. Cell. Biol. 174, 1107-1117 (2006).
  31. Yago, T., Zarnitsyna, V. I., Klopocki, A. G., McEver, R. P., Zhu, C. Transport governs flow-enhanced cell tethering through L-selectin at threshold shear. Biophys. J. 92, 330-342 (2007).
  32. Evans, E., Berk, D., Leung, A. Detachment of agglutinin-bonded red blood cells. I. Forces to rupture molecular-point attachments. Biophys. J. 59, 838-848 (1991).
  33. Zarnitsyna, V. I. Memory in receptor-ligand-mediated cell adhesion. Proc. Natl. Acad. Sci. U. S. A. 104, 18037-18042 (2007).
check_url/it/3519?article_type=t

Play Video

Citazione di questo articolo
Zarnitsyna, V. I., Zhu, C. Adhesion Frequency Assay for In Situ Kinetics Analysis of Cross-Junctional Molecular Interactions at the Cell-Cell Interface. J. Vis. Exp. (57), e3519, doi:10.3791/3519 (2011).

View Video