Summary

细胞内复性检测

Published: January 24, 2012
doi:

Summary

在这个协议的方法来衡量热休克后细胞内蛋白质复性的描述。这种方法可以用来研究如分子伴侣和他们的共同因素或化合物能够影响他们的活动foldases。萤火虫荧光素酶的活动是作为记者来衡量伴侣复性活动。

Abstract

本协议描述了一个方法来衡量,在基于单元的系统和抑制/刺激活性的化合物可能产生的影响酶的活性分子伴侣。分子伴侣是参与调节蛋白质折叠1的蛋白质,有促进细胞存活时强调侮辱,如休克2,营养饥饿和接触化学 /毒药3的关键作用。出于这个原因的伴侣被发现在参与活动,如肿瘤的发展癌细胞4 chemioresistance以及神经退行性疾病5。能够抑制或刺激这些酶的活性小分子的设计,因此,用于癌症治疗和神经退行性疾病的研究最多的战略之一。这里所描述的实验提供的可能性来衡量一个特定的分子伴侣复性的活动,并研究对比赛的影响ounds就其活动。这种方法调查的分子伴侣基因转染的萤火虫荧光素酶基因的表达载体。它已经描述,可以通过10,11分子伴侣复性变性萤火虫荧光素酶。作为转染控制正常化,为海肾荧光素酶基因的载体转染。在本协议中所述的所有转染基因的X极端 11(罗氏)在HEK – 293细胞。在第一步中,蛋白质的合成,抑制细胞治疗与放线菌酮。此后蛋白展开是在45 ° C诱导热休克30分钟。恢复后,在37 ° C,蛋白质重新折叠成其活性构象和萤火虫荧光素酶的活性是用作读出:会产生更多的光,更多的蛋白质将重新获得原来的构象。非热震惊细胞作为参考(100%的复性荧光素酶)。

Protocol

1。播种细胞开始前,热身在37℃水浴中培养液,PBS 1X和胰蛋白酶˚彗星的孵化器中取出细胞,吸中等。 轻轻地适用于洗细胞5毫升的PBS 1X。 吸出PBS 1X和适用于1毫升胰蛋白酶含0025%EDTA。 轻轻旋转板有均匀分布的胰蛋白酶。 在孵化器中放置的细胞在37˚C为5-10分钟(取决于细胞类型)。从不定期检查,如果细胞分离摇板。 在10-20毫升培养基重悬细胞,?…

Discussion

在这项工作中来衡量细胞内分子伴侣复性活动的协议。整个实验可在3到4天,在概述所示。 1。

萤火虫和海肾荧光素酶产生的光信号的鲁棒性和线性代表一个坚实的基础协议的重现性。

检测的关键步骤是一个有效率的转染试剂的选择,以确保分子伴侣和萤火虫荧光素酶的过度表达。报告基因可交付也与其他方法,如腺病毒?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

达尼洛Maddalo是作为年轻的调查组,从卡尔斯鲁厄理工学院(YIG)的研究奖学金获得者。

Materials

For this experiment a Luminometer form Perkin Elmer ‘1420 Luminescence Counter’ Vector Light′ was used

Programs for the Luminometer:

Renilla: Pump 1, 100 μl injection

Reaction Buffer: Pump1, 70 μl injection

Luciferin: Pump2, 30μl injection

For the buffers prepare these stock solutions in double distilled water:

  •       1M MgSO4 : 246,48g MgSO4*7H2O in 1 liter
  • –       0,5M EGTA: 190,18g EGTA in 1 liter
  • –       1M KH2PO4: 136,09g KH2PO4 in 1 liter
  • –       1M K2HPO4: 228,23g K2HPO4*3H2O in 1 liter
  • –       5M NaCl: 292,2g NaCl in 1 liter
  • –       0,5M EDTA: 186,12g EDTA*2H2O in 1 liter          

GLY-GLY-buffer:

  • –       25mM Glycylglycin
  • –       15mM MgSO4
  • –       4mM EGTA

For 1 liter use 3,3g of Glycylglycin, 15ml of a 1M MgSO4 solution and 8ml of a 0,5M EGTA solution. Solve in water, adjust the pH to 7,8 and bring to a total volume of 1 liter.

Reaction buffer for Renilla/Coelenterazine buffer:

  • –      13,4mM KH2PO4
  • –       86,6mM KH2PO4
  • –       0,5M NaCl
  • –       1mM EDTA

For 1 liter use 13,4ml of a 1M KH2PO4 solution, 86,6ml of a 1M K2HPO4 solution, 100ml of a 5M NaCl solution and 2ml of a 0,5M EDTA solution.

  Company Catalog/Product Number:
DMEM (Dulbecco’s Modified Eagle Medium 1X) GIBCO 41966029
Fetal Bovine Serum Gold PAA A15-151
X-treme Gene 9
DNA Transfection Reagent
Roche 06365809001
PBS
Dulbecco’s Phosphate Buffered Saline 1X
GIBCO 14190-094
MOPS
3-(N-Morpholino)Propanesulfonic acid
SIGMA-ALDRICH M1254
Cycloheximide SIGMA-ALDRICH C7698
Passive Lysis Buffer 5X Promega E194A

Glycylglycin
EGTA
MgSO4 (MgSO4*7H2O)

SIGMA-ALDRICH
Roth
Roth
G7278
3054.2
P027.1

KH2PO4
K2HPO4 (K2HPO4*3H2O)
NaCl
EDTA

Roth
Roth
Roth
Roth
3904.1
6878.2
3957.1
8043.1
Luciferin Firefly Biosynth L8200
Coelenterazine Biosynth C7000
DTT (Dithiothreitol) Roth 6908.2
ATP (Adenosine Triphosphate) Roche 10519987001

Riferimenti

  1. Bukau, B., Weissman, J., Horwich, A. Molecular chaperones and protein quality control. Cell. 125, 443-443 (2006).
  2. Ritossa, F. Discovery of the heat shock response. Cell Stress Chaperones. 1, 97-97 (1996).
  3. Hendrick, J. P., Hartl, F. U. Molecular chaperone functions of heat-shock proteins. Annu. Rev. Biochem. 62, 349-349 (1993).
  4. Fuqua, S. A. Heat shock proteins and drug resistance. Breast. Cancer. Res. Treat. 32, 67-67 (1994).
  5. Guzhova, I., Margulis, B. Hsp70 chaperone as a survival factor in cell pathology. Int. Rev. Cytol. 254, 101-101 (2006).
  6. Whitesell, L., Lindquist, S. L. HSP90 and the chaperoning of cancer. Nat. Rev. Cancer. 5, 761-761 (2005).
  7. Konstantinopoulos, P. A., Papavassiliou, A. G. 17-AAG: mechanisms of antitumour activity. Expert. Opin. Investig. Drugs. 14, 1471-1471 (2005).
  8. Galluzzi, L., Giordanetto, F., Kroemer, G. Targeting HSP70 for cancer therapy. Mol. Cell. 36, 176-176 (2009).
  9. Ozacmak, V. H., Barut, F., Ozacmak, H. S. Melatonin provides neuroprotection by reducing oxidative stress and HSP70 expression during chronic cerebral hypoperfusion in ovariectomized rats. J. Pineal. Res. 47, 156-156 (2009).
  10. Schroder, H., Langer, T., Hartl, F. U., Bukau, B. DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO. J. 12, 4137-41 (1993).
  11. Thulasiraman, V., Matts, R. L. Effect of geldanamycin on the kinetics of chaperone-mediated renaturation of firefly luciferase in rabbit reticulocyte lysate. Biochimica. 35, 13443-13443 (1996).
  12. Howarth, J. L. Hsp40 molecules that target to the ubiquitin-proteasome system decrease inclusion formation in models of polyglutamine disease. Mol. Ther. 15, 1110-1110 (2007).
  13. Nollen, E. A. Bag1 functions in vivo as a negative regulator of Hsp70 chaperone activity. Mol. Cell. Biol. 20, 1083-1083 (2000).
check_url/it/3540?article_type=t

Play Video

Citazione di questo articolo
Walther, T. V., Maddalo, D. Intracellular Refolding Assay. J. Vis. Exp. (59), e3540, doi:10.3791/3540 (2012).

View Video