Summary

Monitoramento adsorção de proteínas com Solid-state Nanoporos

Published: December 02, 2011
doi:

Summary

Um método de usar solid-state nanoporos para monitorar a adsorção não-específica de proteínas em uma superfície inorgânica é descrita. O método emprega o princípio de pulso-resistivo, permitindo a adsorção a ser sondado em tempo real e ao nível de moléculas individuais. Porque o processo de adsorção de proteínas é única longe do equilíbrio, propomos o emprego de matrizes paralelas de nanoporos sintéticos, permitindo que para a determinação quantitativa da taxa de reação aparente de primeira ordem constante de adsorção de proteínas, assim como o de adsorção de Langmuir e constante.

Abstract

Solid-state nanoporos têm sido utilizados para realizar as medições ao nível única molécula para examinar a estrutura local e flexibilidade de ácidos nucléicos 1-6, o desdobramento de proteínas 7 e afinidade de ligação de ligantes diferentes 8. Ao unir esses nanoporos à técnica de pulso-resistivo 9-12, tais medições pode ser feito sob uma ampla variedade de condições e sem a necessidade de rotulagem 3. Na técnica de resistência de pulso, uma solução de sal iônico é introduzido em ambos os lados do nanopore. Portanto, os íons são levados de um lado da câmara para o outro por um potencial transmembrana aplicada, resultando em uma corrente constante. O particionamento de um analito na nanopore provoca uma deflexão bem definidas nesta corrente, que pode ser analisado para extrair informação única molécula. Usando esta técnica, a adsorção de proteínas único para as paredes nanopore pode ser monitorado em uma ampla gama decondições 13. Adsorção de proteínas está crescendo em importância, porque, como dispositivos microfluídicos encolher de tamanho, a interação destes sistemas com proteínas simples se torna uma preocupação. Este protocolo descreve um ensaio rápido para a proteína de ligação aos filmes de nitreto, que pode ser facilmente alargada a outros filmes finos passíveis de perfuração nanopore, ou em superfícies de nitreto de funcionalizados. A variedade de proteínas pode ser explorado sob uma ampla gama de soluções e condições de desnaturação. Além disso, este protocolo pode ser usado para explorar mais problemas básicos usando espectroscopia nanopore.

Protocol

1. Fabricação de estado sólido nanoporos em membranas de nitreto de silício Traga TEM FEI Tecnai F20 S / a uma tensão de aceleração de 200 kV. Se estiver usando um S diferentes / TEM, a tensão de aceleração deve ser maior ou igual a 200 kV 9 Carga de 20 nm de espessura de silício SPI grade janela nitreto no porta-amostras TEM e limpo, com plasma de oxigênio por 30 segundos para remover quaisquer contaminantes do titular. Carregar a amostra para o S / TEM e permitir a…

Discussion

Adsorção espontânea de proteínas em estado sólido superfícies 27-29 é de fundamental importância em várias áreas, tais como aplicações biochip e design de uma nova classe de biomateriais híbridos funcionais. Estudos anteriores mostraram que as proteínas adsorvidas para solid-state superfícies não apresentam mobilidade lateral ou taxas de dessorção significativa e, portanto, adsorção de proteínas é geralmente considerado um processo irreversível e inespecífico 30-32. Adsorç?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Os autores gostariam de agradecer a John Grazul (Cornell University), Andre Marziali (The University of British Columbia em Vancouver) e Vincent Tabard-Cossa (The University of Ottawa) para os seus conselhos. Este trabalho é financiado em parte por concessões do National Science Foundation EUA (DMR-0706517 e DMR-1006332) e pelo National Institutes of Health (R01-GM088403). A perfuração nanopore foi realizada no Centro de Microscopia Eletrônica do Centro Cornell de Pesquisa de Materiais (CCMR) com o apoio da National Science Foundation – Ciência dos Materiais de Pesquisa e Centros de Engenharia de programa (MRSEC) (DMR 0.520.404). A preparação das membranas de nitreto de silício foi realizada no Centro de Cornell em nanoescala, um membro da Rede Nacional de Nanotecnologia Infra-estrutura, que é apoiado pela National Science Foundation (Grant ECS-0335765).

Materials

Name of the reagent Company Catalogue number Comments
Tecnai F20 S/TEM FEI   S/TEM requires acceleration voltage ≥200kV and field-emission source.
20 nm thick silicon nitride membrane window for TEM SPI 4163SN-BA  
Axon Axopatch 200B patch-clamp amplifier Molecular Devices    
Axon Digidata 1440A Molecular Devices    
pCLAMP 10 software Molecular Devices   Electrophysiology Data Acquisition and Analysis Software
Sulfuric Acid Fisher Scientific A300  
hydrogen peroxide Fisher Scientific H325  
silicone O-rings McMaster-Carr 003 S70 Alternatively use PDMS
silver wire Sigma-Aldrich 348759 For electrodes
SPC Technology, D sub contact, pin Newark 9K4978 For electrodes
potassium chloride Sigma P9541  
potassium phosphate dibasic Sigma P2222  
potassium phosphate monobasic Sigma P5379  
PDMS Dow Corning   Sylgar 184 Elastomer set. For making chamber.
Kwik-Cast Sealant World Precision Instruments KWIK-CAST Fast acting silicone sealant
hot plate Fisher Scientific    
Faraday cage      

Riferimenti

  1. Li, J. Ion-beam sculpting at nanometre length scales. Nature. 412, 166-169 (2001).
  2. Li, J., Gershow, M., Stein, D., Brandin, E., Golovchenko, J. A. DNA molecules and configurations in a solid-state nanopore microscope. Nat. Mater. 2, 611-615 (2003).
  3. Dekker, C. Solid-state nanopores. Nature. Nanotechnology. 2, 209-215 (2007).
  4. Branton, D. The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26, 1146-1153 (2008).
  5. Wanunu, M., Morrison, W., Rabin, Y., Grosberg, A. Y., Meller, A. Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nat. Nanotechnol. 5, 160-165 (2010).
  6. Peng, H., Ling, X. S. Reverse DNA translocation through a solid-state nanopore by magnetic tweezers. Nanotechnology. 20, 185101-185101 (2009).
  7. Talaga, D. S., Li, J. Single-molecule protein unfolding in solid state nanopores. J. Am. Chem. Soc. 131, 9287-9297 (2009).
  8. Zhao, Q. Detecting SNPs using a synthetic nanopore. Nano. Lett. 7, 1680-1685 (2007).
  9. Storm, A. J., Chen, J. H., Ling, X. S., Zandbergen, H. W., Dekker, C. Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater. 2, 537-540 (2003).
  10. Sexton, L. T. Resistive-pulse studies of proteins and protein/antibody complexes using a conical nanotube sensor. J. Am. Chem. Soc. 129, 13144-13152 (2007).
  11. Martin, C. R., Siwy, Z. S. Chemistry. Learning nature’s way: biosensing with synthetic nanopores. Science. 317, 331-332 (2007).
  12. Sexton, L. T. An adsorption-based model for pulse duration in resistive-pulse protein sensing. J. Am. Chem. Soc. 132, 6755-6763 (2010).
  13. Niedzwiecki, D. J., Grazul, J., Movileanu, L. Single-molecule observation of protein adsoption onto an inorganic surface. J. Am. Chem. Soc. 132, 10816-10822 (2010).
  14. Wanunu, M., Meller, A., Selvin, P. R., Ha, T. . Single-molecule techniques: a laboratory manual. , 395-420 (2008).
  15. Han, A. Label-free detection of single protein molecules and protein-protein interactions using synthetic nanopores. Anal. Chem. 80, 4651-4658 (2008).
  16. Han, A. Sensing protein molecules using nanofabricated pores. Appl. Phys. Lett. 88, (2006).
  17. Fologea, D., Ledden, B., McNabb, D. S., Li, J. Electrical characterization of protein molecules by a solid-state nanopore. Appl. Phys. Lett. 91, (2007).
  18. Firnkes, M., Pedone, D., Knezevic, J., Doblinger, M., Rant, U. Electrically Facilitated Translocations of Proteins through Silicon Nitride Nanopores: Conjoint and Competitive Action of Diffusion, Electrophoresis, and Electroosmosis. Nano. Lett. , (2010).
  19. Pedone, D., Firnkes, M., Rant, U. Data analysis of translocation events in nanopore experiments. Anal. Chem. 81, 9689-9694 (2009).
  20. Oukhaled, A. Dynamics of Completely Unfolded and Native Proteins through Solid-State Nanopores as a Function of Electric Driving Force. ACS. Nano.. , (2011).
  21. Yusko, E. C. Controlling protein translocation through nanopores with bio-inspired fluid walls. Nat. Nanotechnol. 6, 253-260 (2011).
  22. Arafat, A., Schroen, K., de Smet, L. C., Sudholter, E. J., Zuilhof, H. Tailor-made functionalization of silicon nitride surfaces. J. Am. Chem. Soc. 126, 8600-8601 (2004).
  23. Wanunu, M., Meller, A. Chemically modified solid-state nanopores. Nano. Lett. 7, 1580-1585 (2007).
  24. Movileanu, L., Cheley, S., Bayley, H. Partitioning of individual flexible polymers into a nanoscopic protein pore. Biophys. J. 85, 897-910 (2003).
  25. Aksimentiev, A. Deciphering ionic current signatures of DNA transport through a nanopore. Nanoscale. 2, 468-483 (2010).
  26. Timp, W. Nanopore Sequencing: Electrical Measurements of the Code of Life. IEEE Trans. Nanotechnol. 9, 281-294 (2010).
  27. Roach, P., Farrar, D., Perry, C. C. Surface tailoring for controlled protein adsorption: effect of topography at the nanometer scale and chemistry. J. Am. Chem. Soc. 128, 3939-3945 (2006).
  28. Roach, P., Farrar, D., Perry, C. C. Interpretation of protein adsorption: surface-induced conformational changes. J. Am. Chem. Soc. 127, 8168-8173 (2005).
  29. Brewer, S. H., Glomm, W. R., Johnson, M. C., Knag, M. K., Franzen, S. Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir. 21, 9303-9307 (2005).
  30. Schon, P., Gorlich, M., Coenen, M. J., Heus, H. A., Speller, S. Nonspecific protein adsorption at the single molecule level studied by atomic force microscopy. Langmuir. 23, 9921-9923 (2007).
  31. Rabe, M., Verdes, D., Zimmermann, J., Seeger, S. Surface organization and cooperativity during nonspecific protein adsorption events. J. Phys. Chem. B. 112, 13971-13980 (2008).
  32. Rabe, M., Verdes, D., Rankl, M., Artus, G. R., Seeger, S. A comprehensive study of concepts and phenomena of the nonspecific adsorption of beta-lactoglobulin. Chemphyschem. 8, 862-872 (2007).
  33. Micic, M., Chen, A., Leblanc, R. M., Moy, V. T. Scanning Electron Microscopy Studies of Protein-Functionalized Atomic Force Microscopy Cantilever Tips. Scanning. 21, 394-397 (1999).
  34. Grant, A. W., Hu, Q. H., Kasemo, B. Transmission electron microscopy ‘windows’ for nanofabricated structures. Nanotechnology. 15, 1175-1181 (2004).
  35. Giannoulis, C. S., Desai, T. A. Characterization of proteins and fibroblasts on thin inorganic films. J. Mater. Sci: Mater. Med. 13, 75-80 (2002).
  36. Gustavsson, J. Surface modifications of silicon nitride for cellular biosensors applications. J. Mater. Sci: Mater. Med. 19, 1839-1850 (2008).
  37. Shirshov, Y. M. Analysis of the response of planar polarization interferometer to molecular layer formation: fibrinogen adsorption on silicon nitride surface. Biosens. Bioelectron. 16, 381-390 (2001).
  38. Chen, P. Atomic layer deposition to fine-tune the surface properties and diamters of fabricated nanopores. Nano. Lett. 4, 1333-1337 (2004).
  39. Siwy, Z. Protein biosensors based on biofunctionalized conical gold nanotubes. J. Am. Chem. Soc. 127, 5000-5001 (2005).
  40. Ding, S., Gao, C., Gu, L. Q. Capturing Single Molecules of Immunoglobulin and Ricin with an Aptamer-Encoded Glass Nanopore. Anal. Chem. , (2009).
  41. Kim, M. -. J., Wanunu, M., Bell, C. D., Meller, A. Rapid Fabrication of Uniform Size Nanopores and Nanopore Arrays for Parallel DNA Analysis. Adv. Mater. 18, 3149-3153 (2006).
  42. Bezrukov, S. M. Ion channels as molecular Coulter counters to probe metabolite transport. J. Membr. Biol. 174, 1-13 (2000).
check_url/it/3560?article_type=t

Play Video

Citazione di questo articolo
Niedzwiecki, D. J., Movileanu, L. Monitoring Protein Adsorption with Solid-state Nanopores. J. Vis. Exp. (58), e3560, doi:10.3791/3560 (2011).

View Video