Summary

ऊतक के मूल्यांकन के लिए चुंबकीय अनुनाद Elastography पद्धति इंजीनियर निर्माण विकास

Published: February 09, 2012
doi:

Summary

प्रक्रिया वसा और यांत्रिक सूक्ष्म चुंबकीय अनुनाद elastography (μMRE) का उपयोग गुण की noninvasive स्थानीय मूल्यांकन के माध्यम osteogenic ऊतक इंजीनियर constructs के इंजीनियर परिणाम की निगरानी के लिए चुंबकीय अनुनाद elastography की कार्यप्रणाली को दर्शाता है.

Abstract

Traditional mechanical testing often results in the destruction of the sample, and in the case of long term tissue engineered construct studies, the use of destructive assessment is not acceptable. A proposed alternative is the use of an imaging process called magnetic resonance elastography. Elastography is a nondestructive method for determining the engineered outcome by measuring local mechanical property values (i.e., complex shear modulus), which are essential markers for identifying the structure and functionality of a tissue. As a noninvasive means for evaluation, the monitoring of engineered constructs with imaging modalities such as magnetic resonance imaging (MRI) has seen increasing interest in the past decade1. For example, the magnetic resonance (MR) techniques of diffusion and relaxometry have been able to characterize the changes in chemical and physical properties during engineered tissue development2. The method proposed in the following protocol uses microscopic magnetic resonance elastography (μMRE) as a noninvasive MR based technique for measuring the mechanical properties of small soft tissues3. MRE is achieved by coupling a sonic mechanical actuator with the tissue of interest and recording the shear wave propagation with an MR scanner4. Recently, μMRE has been applied in tissue engineering to acquire essential growth information that is traditionally measured using destructive mechanical macroscopic techniques5. In the following procedure, elastography is achieved through the imaging of engineered constructs with a modified Hahn spin-echo sequence coupled with a mechanical actuator. As shown in Figure 1, the modified sequence synchronizes image acquisition with the transmission of external shear waves; subsequently, the motion is sensitized through the use of oscillating bipolar pairs. Following collection of images with positive and negative motion sensitization, complex division of the data produce a shear wave image. Then, the image is assessed using an inversion algorithm to generate a shear stiffness map6. The resulting measurements at each voxel have been shown to strongly correlate (R2>0.9914) with data collected using dynamic mechanical analysis7. In this study, elastography is integrated into the tissue development process for monitoring human mesenchymal stem cell (hMSC) differentiation into adipogenic and osteogenic constructs as shown in Figure 2.

Protocol

1. ऊतक निर्माण तैयार ऊतक तैयार करने की प्रक्रिया के निर्माण के तीन मुख्य चरण होते हैं: सेल की आबादी का विस्तार, एक biomaterial पाड़ पर कोशिकाओं के बोने, रासायनिक संकेतन अणुओं के उपयोग के माध्यम से और भे…

Discussion

इस प्रक्रिया में, ऊतक इंजीनियर constructs के लिए MRE की प्रक्रिया सेल तैयारी से एक elastogram की पीढ़ी के लिए प्रदर्शन किया है. ऊतक इंजीनियरिंग पाइपलाइन के nondestructive यांत्रिक मूल्यांकन पद्धति लागू करके, यह अब संभव है है के…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

इस शोध में भाग RO3-02-EB007299 NIH और NSF EPSCoR प्रथम पुरस्कार द्वारा समर्थित किया गया था.

Materials

Material Name Tipo Company Catalogue number Comments
MSCGM-Bullet Kit Reagent Lonza PT-3001 Store at 4°C
1X DPBS Reagent Invitrogen 21600-010  
0.05% Trypsin-EDTA Reagent Gibco, Invitrogen 25300-054 Store at -20°C
Dexamethasone Reagent Sigma-Aldrich D2915  
3-Isobutyl-1-methylxanthine Reagent Sigma-Aldrich I5879 Store at -20°C
Insulin-bovine pancreas Reagent Sigma-Aldrich I6634 Store at -20°C
Indomethacin Reagent Sigma-Aldrich I7378  
Β-Glycerophosphate Reagent Sigma-Aldrich G9891  
L-Ascorbic Acid 2-phosphate Reagent Sigma-Aldrich A8960  
Gelfoam Scaffold Pharmacia & Upjohn Co. 09-0315-08  
Human mesenchymal stem cells Cell Line Lonza PT-2501  
9.4T MR Scanner Equipment Agilent   400MHz WB
10mm Litz Coil Equipment Doty Scientific    
Laser Doppler Vibrometer Equipment Polytec PDV-100  
Vibrosoft (20) Software Polytec    
Function generator Equipment Agilent AFG 3022B  
Amplifier Equipment Piezo inc EPA-104-115  
Piezo Bending motor Equipment Piezo inc. T234-A4Cl-203X  
Computer-Linux Equipment Processor: Intel Core 2 Duo E8400
Memory: 2G
   
Computer-Windows Equipment Processor: Intel Core 2 Duo E8400
Memory: 2G
   
MATLAB Software Mathworks, inc   2009b

Riferimenti

  1. Xu, H., Othman, S. F., Magin, R. L. Monitoring tissue engineering using magnetic resonance imaging. J. Biosci. Bioeng. 106, 515-527 (2008).
  2. Xu, H., Othman, S. F., Hong, L., Peptan, I. A., Magin, R. L. Magnetic resonance microscopy for monitoring osteogenesis in tissue-engineered construct in vitro. Phys. Med. Biol. 51, 719-732 (2006).
  3. Othman, S. F., Xu, H., Royston, T. J., Magin, R. L. Microscopic magnetic resonance elastography (microMRE. Magn. Reson. Med. 54, 605-615 (2005).
  4. Muthupillai, R., Lomas, D. J., Rossman, P. J., Greenleaf, J. F., Manduca, A., Ehman, R. L. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science. 269, 1854-1857 (1995).
  5. Othman, S. F., Curtis, E. T., Plautz, S. A., Pannier, A. P., Xu, H. Magnetic resonance elastography monitoring of tissue engineered constructs. NMR Biomed. , (2011).
  6. Oliphant, T. E., Manduca, A., Ehman, R. L., Greenleaf, J. F. Complex-valued stiffness reconstruction for magnetic resonance elastography by algebraic inversion of the differential equation. Magn. Reson. Med. 45, 299-310 (2001).
  7. Ringleb, S. I., Chen, Q., Lake, D. S., Manduca, A., Ehman, R. L., An, K. Quantitative shear wave: comparison to a dynamic shear material test. Magn. Reson. Med. 53, 1197-1201 (2005).
  8. Hong, L., Peptan, I., Clark, P., Mao, J. J. Ex vivo adipose tissue engineering by human marrow stromal cell seeded gelatin sponge. Ann. Biomed. Eng. 33, 511-517 (2005).
  9. Dennis, J. E., Haynesworth, S. E., Young, R. G., Caplan, A. I. Osteogenesis in marrow-derived mesenchymal cell porous ceramic composites transplanted subcutaneously: effect of fibronectin and laminin on cell retention and rate of osteogenic expression. Cell Transplant. 1, 23-32 (1992).
  10. Marion, N. W., Mao, J. J. Mesenchymal stem cells and tissue engineering. Methods Enzymol. 420, 339-361 (2006).
  11. Rydberg, J., Grimm, R., Kruse, S., Felmlee, J., McCracken, P., Ehman, R. L. Fast spin-echo magnetic resonance elastography of the brain. , 1647-1647 (2001).
  12. Kruse, S. A., Grim, R. C., Lake, D. S., Manduca, A., Ehman, R. L. Fast EPI based 3D MR elastography of the brain. , 3385-3385 (2006).
check_url/it/3618?article_type=t

Play Video

Citazione di questo articolo
Curtis, E. T., Zhang, S., Khalilzad-Sharghi, V., Boulet, T., Othman, S. F. Magnetic Resonance Elastography Methodology for the Evaluation of Tissue Engineered Construct Growth. J. Vis. Exp. (60), e3618, doi:10.3791/3618 (2012).

View Video