Summary

Påvisning av giftstoffer translokasjon i Host cytosol ved Surface Plasmon Resonance

Published: January 03, 2012
doi:

Summary

I denne rapporten beskriver vi hvordan overflaten plasmon resonans blir brukt til å påvise toksin innreise til verten cytosol. Denne svært følsom metode kan gi kvantitative data om mengden av cytosoliske toksin, og den kan brukes til en rekke giftstoffer.

Abstract

AB giftstoffer består av en enzymatisk A subenhet og en celle-bindende B-subenhet 1. Disse giftstoffer skilles ut i ekstracellulære miljøet, men de handle på mål i eukaryote cytosol. Noen AB giftstoffer reise med vesicle bærere fra cellen overflate til det endoplasmatiske retikulum (ER) før vi går i cytosol 2-4. I ER, til katalytiske En kjede spaltes fra resten av toksinet og beveger seg gjennom et protein-ledende kanal nå sitt cytosoliske mål 5. Den translocated, cytosoliske En kjede er vanskelig å oppdage fordi toksinet trafficking til ER er en svært ineffektiv prosess: De fleste internalisert toksinet er rutet til lysosomer for degradering, så bare en liten brøkdel av overflate-bundet toksinet når Golgi-apparatet og ER 6 -12.

For å overvåke toksin translokasjon fra ER til cytosol i dyrkede celler, kombinerte vi en subcellular fraksjonering protokoll med highly sensitive deteksjonsmetode av overflaten plasmon resonans (SPR) 13-15. Plasma membran av toksin-behandlede cellene er selektivt permeabilized med digitonin, slik samling av en cytosoliske brøkdel som deretter perfused over en SPR sensor belagt med en anti-toksin En kjede antistoff. Antistoff-belagte sensor kan fange opp og oppdage pg / ml mengder cytosoliske toksin. Med denne protokollen, er det mulig å følge kinetikken av toksin oppføring i cytosol og å karakterisere hemmende effekter på translokasjon hendelsen. Konsentrasjonen av cytosoliske toksinet kan også beregnes fra en standard kurve generert med kjente mengder av en kjede standarder som har blitt perfused over sensoren. Vår metode representerer en rask, følsom, og kvantitative deteksjon system som ikke krever radiolabeling eller andre modifikasjoner til målet toxin.

Protocol

1. Utarbeidelse av digitonin Legg til 500 mL av 100% etanol til en mikrosentrifuge tube og legg den i en varme blokk innstilt på 80 ° C i 10 min. Løs 2,5 mg digitonin i 250 mL av det oppvarmede etanol å produsere en 1% stamløsning av digitonin. For å generere en fungerende løsning på 0,04% digitonin, tilsett 40 mL av digitonin stamløsning til 960 mL av HCN buffer (50 mM Hepes 7,5 pH, 150 mM NaCl, 2 mM CaCl 2, 10 mM N-ethylmaleimide, og en proteasehemmer cocktail). …

Discussion

Sammenligning med eksisterende metodikk

Våre SPR-baserte translokasjon analysen representerer en rask, følsom, og kvantitative metode for å detektere toxin levering i verten cytosol. Teknikken krever ikke radiolabeling eller andre endringer av giftstoffer, og det kan brukes på alle toksin som en anti-toksin A kjede antistoff er tilgjengelig. Eksisterende metoder for å overvåke toxin passasje inn i cytosol også stole på en subcellular fraksjonering protokoll for å partisjonere celle ek…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Dette arbeidet ble finansiert av NIH tilskudd R01 AI073783 til K. Teter. Vi takker Dr. Shane Massey for bistand i utviklingen av subcellular fraksjonering protokollen og Helen Burress for kritisk lesing av manuskriptet.

Materials

Name of the reagent Company Catalogue number
Digitonin Sigma D141
Ethanol Acros 61509-0010
DMEM Invitrogen 11995065
Fetal Bovine Serum Atlanta Biologicals S11550
Ganglioside GM1 Sigma G7641
CTA Sigma C2398
PTS1 List 182
NHS (N-Hydroxysuccinimide) Pierce 24500
EDC (1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide) Thermo Scientific 22981
Ethanolamine Sigma E0135
PBST Medicago 09-8903-100
Anti-CTA antibody Santa Cruz Biotech sc-80747
Anti-CTB antibody Calbiochem 227040
Anti-PTS1 antibody Santa Cruz Biotech sc-57639
Refractometer Reichert SR7000, SR7000DC
SPR sensor slides Reichert 13206060
Syringe pump Cole Palmer 780200C

Riferimenti

  1. Sandvig, K., van Deurs, B. Membrane traffic exploited by protein toxins. Annu. Rev. Cell Dev. Biol. 18, 1-24 (2002).
  2. Watson, P., Spooner, R. A. Toxin entry and trafficking in mammalian cells. Adv. Drug Deliv. Rev. 58, 1581-1596 (2006).
  3. Carbonetti, N. H. Pertussis toxin and adenylate cyclase toxin: key virulence factors of Bordetella pertussis and cell biology tools. Future Microbiol. 5, 455-469 (2010).
  4. Wernick, N. L. B., Chinnapen, D. J. -. F., Cho, J. A., Lencer, W. I. Cholera toxin: an intracellular journey into the cytosol by way of the endoplasmic reticulum. Toxins. 2, 310-325 (2010).
  5. Lord, J. M., Roberts, L. M., Lencer, W. I. Entry of protein toxins into mammalian cells by crossing the endoplasmic reticulum membrane: co-opting basic mechanisms of endoplasmic reticulum-associated degradation. Curr. Top. Microbiol. Immunol. 300, 149-168 (2005).
  6. Lencer, W. I. Entry of cholera toxin into polarized human intestinal epithelial cells. Identification of an early brefeldin A sensitive event required for A1-peptide generation. J. Clin. Invest. 92, 2941-2951 (1993).
  7. Orlandi, P. A., Curran, P. K., Fishman, P. H. Brefeldin A blocks the response of cultured cells to cholera toxin. Implications for intracellular trafficking in toxin action. J. Biol. Chem. 268, 12010-12016 (1993).
  8. Sandvig, K., Prydz, K., Hansen, S. H., van Deurs, B. Ricin transport in brefeldin A-treated cells: correlation between Golgi structure and toxic effect. J. Cell. Biol. 115, 971-981 (1991).
  9. Sandvig, K., Prydz, K., Ryd, M., van Deurs, B. Endocytosis and intracellular transport of the glycolipid-binding ligand Shiga toxin in polarized MDCK cells. J. Cell Biol. 113, 553-562 (1991).
  10. van Deurs, B. Estimation of the amount of internalized ricin that reaches the trans-Golgi network. J. Cell Biol. 106, 253-267 (1988).
  11. Tam, P. J., Lingwood, C. A. Membrane cytosolic translocation of verotoxin A1 subunit in target cells. Microbiology. 153, 2700-2710 (2007).
  12. Plaut, R. D., Carbonetti, N. H. Retrograde transport of pertussis toxin in the mammalian cell. Cell. Microbiol. 10, 1130-1139 (2008).
  13. Willander, M., Al-Hilli, S. Analysis of biomolecules using surface plasmons. Methods Mol. Biol. 544, 201-229 (2009).
  14. Homola, J. Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377, 528-539 (2003).
  15. Medaglia, M. V., Fisher, R. J., Golemis, E. . Protein-Protein Interactions. , 255-272 (2002).
  16. Banerjee, T. Contribution of subdomain structure to the thermal stability of the cholera toxin A1 subunit. Biochimica. 49, 8839-8846 (2010).
  17. Massey, S. Stabilization of the tertiary structure of the cholera toxin A1 subunit inhibits toxin dislocation and cellular intoxication. J. Mol. Biol. 393, 1083-1096 (2009).
  18. Taylor, M. A therapeutic chemical chaperone inhibits cholera intoxication and unfolding/translocation of the cholera toxin A1 subunit. PLoS ONE. 6, e18825-e18825 (2011).
  19. Taylor, M. Hsp90 is required for transfer of the cholera toxin A1 subunit from the endoplasmic reticulum to the cytosol. J. Biol. Chem. 285, 31261-31267 (2010).
  20. Donta, S. T., Beristain, S., Tomicic, T. K. Inhibition of heat-labile cholera and Escherichia coli enterotoxins by brefeldin A. Infect. Immun. 61, 3282-3286 (1993).
  21. Donta, S. T., Tomicic, T. K., Donohue-Rolfe, A. Inhibition of Shiga-like toxins by brefeldin. A. J. Infect. Dis. 171, 721-724 (1995).
  22. Nambiar, M. P., Oda, T., Chen, C., Kuwazuru, Y., Wu, H. C. Involvement of the Golgi region in the intracellular trafficking of cholera toxin. J. Cell. Physiol. 154, 222-228 (1993).
  23. Rapak, A., Falnes, P. O., Olsnes, S. Retrograde transport of mutant ricin to the endoplasmic reticulum with subsequent translocation to cytosol. Proc. Natl. Acad. Sci. U. S. A. 94, 3783-3788 (1997).
  24. Xu, Y., Barbieri, J. T. Pertussis toxin-mediated ADP-ribosylation of target proteins in Chinese hamster ovary cells involves a vesicle trafficking mechanism. Infect. Immun. 63, 825-832 (1995).
  25. Yoshida, T., Chen, C. C., Zhang, M. S., Wu, H. C. Disruption of the Golgi apparatus by brefeldin A inhibits the cytotoxicity of ricin, modeccin, and Pseudomonas toxin. Exp. Cell Res. 192, 389-395 (1991).
  26. Godber, B. Direct quantification of analyte concentration by resonant acoustic profiling. Clin. Chem. 51, 1962-1972 (2005).
  27. Bernardi, K. M., Forster, M. L., Lencer, W. I., Tsai, B. Derlin-1 facilitates the retro-translocation of cholera toxin. Mol. Biol. Cell. 19, 877-884 (2008).
  28. Wernick, N. L., De Luca, H., Kam, W. R., Lencer, W. I. N-terminal Extension of the Cholera Toxin A1-chain Causes Rapid Degradation after Retrotranslocation from Endoplasmic Reticulum to Cytosol. J. Biol. Chem. 285, 6145-6152 (2010).
  29. Simpson, J. C. Ricin A chain utilises the endoplasmic reticulum-associated protein degradation pathway to enter the cytosol of yeast. FEBS. Lett. 459, 80-84 (1999).
  30. Veithen, A., Raze, D., Locht, C. Intracellular trafficking and membrane translocation of pertussis toxin into host cells. Int. J. Med. Microbiol. 290, 409-413 (2000).
  31. Castro, M. G., McNamara, U., Carbonetti, N. H. Expression, activity and cytotoxicity of pertussis toxin S1 subunit in transfected mammalian cells. Cell. Microbiol. 3, 45-54 (2001).
  32. Schmitz, A., Herrgen, H., Winkeler, A., Herzog, V. Cholera toxin is exported from microsomes by the Sec61p complex. J. Cell Biol. 148, 1203-1212 (2000).
  33. Teter, K., Allyn, R. L., Jobling, M. G., Holmes, R. K. Transfer of the cholera toxin A1 polypeptide from the endoplasmic reticulum to the cytosol is a rapid process facilitated by the endoplasmic reticulum-associated degradation pathway. Infect. Immun. 70, 6166-6171 (2002).
  34. Winkeler, A., Godderz, D., Herzog, V., Schmitz, A. BiP-dependent export of cholera toxin from endoplasmic reticulum-derived microsomes. FEBS Lett. 554, 439-442 (2003).
  35. Yu, M., Haslam, D. B. Shiga toxin is transported from the endoplasmic reticulum following interaction with the luminal chaperone HEDJ/ERdj3. Infect. Immun. 73, 2524-2532 (2005).
  36. LaPointe, P., Wei, X., Gariepy, J. A role for the protease-sensitive loop region of Shiga-like toxin 1 in the retrotranslocation of its A1 domain from the endoplasmic reticulum lumen. J. Biol. Chem. 280, 23310-23318 (2005).
  37. Teter, K., Jobling, M. G., Sentz, D., Holmes, R. K. The cholera toxin A13 subdomain is essential for interaction with ADP-ribosylation factor 6 and full toxic activity but is not required for translocation from the endoplasmic reticulum to the cytosol. Infect. Immun. 74, 2259-2267 (2006).
  38. Redmann, V. Dislocation of ricin toxin a chains in human cells utilizes selective cellular factors. J. Biol. Chem. 286, 21231-21238 (2011).
  39. Yamaizumi, M., Mekada, E., Uchida, T., Okada, Y. One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Cell. 15, 245-250 (1978).
  40. Bellisola, G. Reductive activation of ricin and ricin A-chain immunotoxins by protein disulfide isomerase and thioredoxin reductase. Biochem. Pharmacol. 67, 1721-1731 (2004).
  41. McKee, M. L., FitzGerald, D. J. Reduction of furin-nicked Pseudomonas exotoxin A: an unfolding story. Biochimica. 38, 16507-16513 (1999).
  42. Orlandi, P. A. Protein-disulfide isomerase-mediated reduction of the A subunit of cholera toxin in a human intestinal cell line. J. Biol. Chem. 272, 4591-4599 (1997).
  43. Spooner, R. A. Protein disulphide-isomerase reduces ricin to its A and B chains in the endoplasmic reticulum. Biochem. J. 383, 285-293 (2004).
  44. Fujinaga, Y. Gangliosides that associate with lipid rafts mediate transport of cholera and related toxins from the plasma membrane to endoplasmic reticulm. Mol. Biol. Cell. 14, 4783-4793 (2003).
  45. Guerra, L. Cellular internalization of cytolethal distending toxin: a new end to a known pathway. Cell. Microbiol. 7, 921-934 (2005).
  46. Johannes, L., Tenza, D., Antony, C., Goud, B. Retrograde transport of KDEL-bearing B-fragment of Shiga toxin. J. Biol. Chem. 272, 19554-19561 (1997).
  47. Deeks, E. D. The low lysine content of ricin A chain reduces the risk of proteolytic degradation after translocation from the endoplasmic reticulum to the cytosol. Biochimica. 41, 3405-3413 (2002).
  48. Hazes, B., Read, R. J. Accumulating evidence suggests that several AB-toxins subvert the endoplasmic reticulum-associated protein degradation pathway to enter target cells. Biochimica. 36, 11051-11054 (1997).
  49. Rodighiero, C., Tsai, B., Rapoport, T. A., Lencer, W. I. Role of ubiquitination in retro-translocation of cholera toxin and escape of cytosolic degradation. EMBO Rep. 3, 1222-1227 (2002).
  50. Worthington, Z. E., Carbonetti, N. H. Evading the proteasome: absence of lysine residues contributes to pertussis toxin activity by evasion of proteasome degradation. Infect. Immun. 75, 2946-2953 (2007).
  51. Pande, A. H., Moe, D., Jamnadas, M., Tatulian, S. A., Teter, K. The pertussis toxin S1 subunit is a thermally unstable protein susceptible to degradation by the 20S proteasome. Biochimica. 45, 13734-13740 (2006).
  52. Pande, A. H. Conformational instability of the cholera toxin A1 polypeptide. J. Mol. Biol. 374, 1114-1128 (2007).

Play Video

Citazione di questo articolo
Taylor, M., Banerjee, T., VanBennekom, N., Teter, K. Detection of Toxin Translocation into the Host Cytosol by Surface Plasmon Resonance. J. Vis. Exp. (59), e3686, doi:10.3791/3686 (2012).

View Video