Summary

Фенотипический анализ и выделение мышей гемопоэтических стволовых клеток и Lineage, совершенных прародителей

Published: July 08, 2012
doi:

Summary

Метод анализа распределения костного мозга гемопоэтических предшественников в проточной цитометрии, а также эффективно изолировать высокой степени очистки гемопоэтических стволовых клеток (ГСК) описывается. Изоляция процедуры по существу на основе магнитного обогащения с-Kit + клеток и сортировку, чтобы очистить ГСК на клеточных и молекулярных исследований.

Abstract

The bone marrow is the principal site where HSCs and more mature blood cells lineage progenitors reside and differentiate in an adult organism. HSCs constitute a minute cell population of pluripotent cells capable of generating all blood cell lineages for a life-time1. The molecular dissection of HSCs homeostasis in the bone marrow has important implications in hematopoiesis, oncology and regenerative medicine. We describe the labeling protocol with fluorescent antibodies and the electronic gating procedure in flow cytometry to score hematopoietic progenitor subsets and HSCs distribution in individual mice (Fig. 1). In addition, we describe a method to extensively enrich hematopoietic progenitors as well as long-term (LT) and short term (ST) reconstituting HSCs from pooled bone marrow cell suspensions by magnetic enrichment of cells expressing c-Kit. The resulting cell preparation can be used to sort selected subsets for in vitro and in vivo functional studies (Fig. 2).

Both trabecular osteoblasts2,3 and sinusoidal endothelium4 constitute functional niches supporting HSCs in the bone marrow. Several mechanisms in the osteoblastic niche, including a subset of N-cadherin+ osteoblasts3 and interaction of the receptor tyrosine kinase Tie2 expressed in HSCs with its ligand angiopoietin-15 concur in determining HSCs quiescence. “Hibernation” in the bone marrow is crucial to protect HSCs from replication and eventual exhaustion upon excessive cycling activity6. Exogenous stimuli acting on cells of the innate immune system such as Toll-like receptor ligands7 and interferon-α6 can also induce proliferation and differentiation of HSCs into lineage committed progenitors. Recently, a population of dormant mouse HSCs within the linc-Kit+ Sca-1+ CD150+ CD48CD34 population has been described8. Sorting of cells based on CD34 expression from the hematopoietic progenitors-enriched cell suspension as described here allows the isolation of both quiescent self-renewing LT-HSCs and ST-HSCs9. A similar procedure based on depletion of lineage positive cells and sorting of LT-HSC with CD48 and Flk2 antibodies has been previously described10. In the present report we provide a protocol for the phenotypic characterization and ex vivo cell cycle analysis of hematopoietic progenitors, which can be useful for monitoring hematopoiesis in different physiological and pathological conditions. Moreover, we describe a FACS sorting procedure for HSCs, which can be used to define factors and mechanisms regulating their self-renewal, expansion and differentiation in cell biology and signal transduction assays as well as for transplantation.

Protocol

1. Подготовка суспензии клеток из костного мозга Усыпить мышью и поместить животное в кастрюле из нержавеющей и спрей 70% этанола на его животе и спине. Соберите бедра и голени от задних ног, и позвоночник. Аккуратно удалите все остатки мягких тканей позвоночника с острыми нож?…

Discussion

Описанный здесь метод позволяет быстро и точного анализа кроветворения в отдельных мышей (рис. 1). Этот анализ в различных экспериментальных условиях, в том числе мышиных моделях воспаления, аутоиммунные заболевания, иммунодефицит, дегенеративные заболевания, нарушения обмен…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Мы благодарим Нобуюки Onai, Хитоси Такизава и Маркус Манц за ценные советы. Эта работа финансировалась Швейцарский национальный научный фонд, Швейцарская лига рака и Фондом Ticinese в ла суль RIcerca Cancro.

Materials

Name of the reagent Company Catalogue number
RPMI 1640 Gibco 42401
MEM NEAA 100X Gibco 11140
Sodium Pyruvate Gibco 11360
PenStrep Gibco 15070
PBS Gibco 20012
FBS Gibco 16000
Cell Strainer 40 μm BD Falcon 352340
7-AAD Staining solution BD Pharmingen 559925
Lyse/Fix buffer BD Pharmingen 558049
Perm buffer III BD Pharmingen 558050
Ki-67 BD Pharmingen 556026
DAPI Invitrogen D21490
CD4 (GK1.5) eBioscience 150041
CD8 (53-6.7) eBioscience 150081
CD3 (145-2C11) eBioscience 150031
CD45R (RA3-6B2) eBioscience 150452
CD19 (6D5) eBioscience 150193
Gr1 (RB6-8C5) eBioscience 155931
Tre119 (TER-119) eBioscience 155921
NK-1.1 (PK136) eBioscience 455941
c-Kit (2B8) eBioscience 171171
Sca-1 (D7) eBioscience 135981
CD34 (RAM34) eBioscience 110341
FcγR (2.4G2) eBioscience 553145
Anti-APC MicroBeads Miltenyi Biotec 130-090-855
LS Columns Miltenyi Biotec 130-042-401

Riferimenti

  1. Weissman, I. L. Stem cells: units of development, units of regeneration, and units in evolution. Cell. 100, 157-168 (2000).
  2. Calvi, L. M. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 425, 841-846 (2003).
  3. Zhang, J. Identification of the haematopoietic stem cell niche and control of the niche size. Nature. 425, 836-841 (2003).
  4. Kiel, M. J., Yilmaz, O. H., Iwashita, T., Terhorst, C., Morrison, S. J. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell. 121, 1109-1121 (2005).
  5. Arai, F. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell. 118, 149-161 (2004).
  6. Essers, M. A. IFNalpha activates dormant haematopoietic stem cells in vivo. Nature. 458, 904-908 (2009).
  7. Nagai, Y. Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity. 24, 801-812 (2006).
  8. Wilson, A. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell. 135, 1118-1129 (2008).
  9. Osawa, M., Hanada, K., Hamada, H., Nakauchi, H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science. 273, 242-245 (1996).
  10. Lo Celso, C., Scadden, D., D, . Isolation and Transplantation of Hematopoietic Stem Cells (HSCs. J. Vis. Exp. (2), e157 (2007).
  11. Romanello, M. Autocrine/paracrine stimulation of purinergic receptors in osteoblasts: contribution of vesicular ATP release. Biochem. Biophys. Res. Commun. 331, 1429-1438 (2005).
  12. Casati, A. Cell-autonomous regulation of hematopoietic stem cell cycling activity by ATP. Cell Death Differ. 18, 396-404 (2011).
  13. Bouma, G., Strober, W. The immunological and genetic basis of inflammatory bowel disease. Nat. Rev. Immunol. 3, 521-533 (2003).
  14. Takizawa, H., Regoes, R. R., Boddupalli, C. S., Bonhoeffer, S., Manz, M. G. Dynamic variation in cycling of hematopoietic stem cells in steady state and inflammation. J. Exp. Med. 208, 273-284 (2011).
check_url/it/3736?article_type=t

Play Video

Citazione di questo articolo
Frascoli, M., Proietti, M., Grassi, F. Phenotypic Analysis and Isolation of Murine Hematopoietic Stem Cells and Lineage-committed Progenitors. J. Vis. Exp. (65), e3736, doi:10.3791/3736 (2012).

View Video