Summary

Encellede Analyse af Bacillus subtilis Biofilm Brug fluorescensmikroskopi og Flowcytometri

Published: February 15, 2012
doi:

Summary

Mikrobielle biofilm udgøres generelt af forskellige subpopulationer af specialiserede celler. Enkelt-celle-analyse af disse subpopulationer kræver anvendelse af fluorescerende reportere. Her beskriver vi en protokol til at visualisere og overvåge flere subpopulationswithin<em> B. subtilis</em> Biofilm med fluorescensmikroskopi og flow-cytometri.

Abstract

Biofilmdannelse er en generel egenskab for næsten alle bakterier 1-6. Når bakterier danner biofilm celler er indkapslet i ekstracellulære matrix, der hovedsagelig udgøres af proteiner og exopolysaccharider, blandt andre faktorer 7-10. Den mikrobielt samfund indkapslet i biofilmen ofte viser differentieringen af særskilte underpopulation af specialiserede celler 11-17. Disse delpopulationer eksistere side om side og ofte viser rumlige og tidslige organisation i biofilmen 18-21.

Biofilm dannelse i model organisme Bacillus subtilis kræver differentiering af forskellige subpopulationer af specialiserede celler. Blandt dem er den subpopulation af matrix producenter ansvarlige for at producere og udskille den ekstracellulære matrix af biofilmen afgørende for biofilmdannelse 11,19. Derfor, differentiering af matrix producenter er kendetegnende for biofilmdannelse i B. subtilis.

Vi har brugt fluorescerende reportere til at visualisere og kvantificere subpopulationen af matrix producenter i biofilm af B. subtilis 15,19,22-24. Konkret har vi observeret, at subpopulationen af matrix producenter differentierer i respons på tilstedeværelsen af selv-produceret ekstracellulært signal surfactin 25. Interessant nok er surfactin fremstilles ved en subpopulation af specialiserede celler forskellige fra den subpopulation af matrix producenter 15.

Vi har beskrevet i denne rapport tekniske tilgang er nødvendige for at visualisere og kvantificere subpopulationen af matrix producenter og surfactin producenter inden for biofilm fra B. subtilis. For at gøre dette, er fluorescerende indberettere af gener, der kræves for matrix produktion og surfactin produktion indsættes i kromosomet af B. subtilis. Reportere udtrykkes kun i en subpopulation af specialiserede celler. Derefter kan subpopulationer væreovervåges ved hjælp af fluorescensmikroskopi og flowcytometri (se figur 1).

Den kendsgerning, at forskellige subpopulationer af specialiserede celler eksisterer i flercellede samfund af bakterier giver os et andet perspektiv om reguleringen af ​​genekspression i prokaryoter. Denne protokol omhandler dette fænomen eksperimentelt, og det kan let tilpasses enhver anden bearbejdning model, at belyse de molekylære mekanismer, der ligger til grund for fænotypiske heterogenitet inden for en mikrobielle samfund.

Protocol

1. Mærkning B. subtilis og biofilmdannelse Assay Amplificere ved PCR promotorregionen for genet af interesse. Vi viser, som eksempel kloning af P tapa, promotoren af generne ansvarlige for produktionen af TasA matrixprotein 26. Klon P tapa i pkm008 vektor (skabt af Rudner laboratoriet, Harvard Medical School. Boston, USA) (fig. 2). Linearisere de plasmider, ved enzymatisk fordøjelse (Enzyme anbefalede XhoI). Fremkald naturlig ko…

Discussion

Det faktum, at bakterielle samfund viser subpopulationer af celler, der udtrykker specifikt sæt af gener beviser kompleksiteten af mikrobielle samfund 33,34. Denne protokol skal hjælpe til at fastslå, om ekspressionen af ​​ethvert gen af ​​interesse er begrænset til en bestemt underpopulation af specialiserede celler i det mikrobielle samfund. Visualisering af disse delpopulationer kræver udvikling af nye teknikker, fordi de traditionelle metoder til at overvåge genekspression eller microarray a…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Dette arbejde er finansieret af Young Investigator Research Program, fra Center for Infectious Disease Research (ZINF) fra universitetet i Würzburg. Juan C Garcia-Betancur er ph.d.-stipendiat fra Graduate School of Life Sciences (GSL'er) af universitetet i Würzburg.

Materials

Technique Name of the reagent Company Catalog number
MSgg composition potassium phosphate 5mM Roth 6878
MOPS 100mM Sigma-Aldrich M1254
Magnesium chloride 2mM Roth 2189.1
Calcium chloride 700μM Roth A119.1
Ferric chloride 50μM Sigma-Aldrich 157740
Zinc chloride 1μM Applichem A2076
Thiamine 2μM Sigma-Aldrich 74625
Glycerol 0.5% Roth 7533
Glutamate 0.5% Sigma-Aldrich 49621
Tryptophan 50μg/ml Sigma-Aldrich T0254
Phenylalanine 50μg/ml Sigma-Aldrich P2126
Cell fixation Paraformaldehyde Roth 0335
Name of the equipment Company Catalog number
Sonication Cell Sonicator Bandelin D-1000
Fluorescence Microscopy Fluorescence Microscope Leica DMI6000B
Name of the software Company Catalog Number
Fluorescence Microscopy AsaF Leica
Flow cytometry FCASDiva BD
Flow cytometry FlowJo Treestar

Riferimenti

  1. Costerton, J. W. Overview of microbial biofilms. J. Ind. Microbiol. 15, 137-140 (1995).
  2. Davey, M. E., O’Toole, G. A. Microbial biofilms: from ecology to molecular genetics. Microbiol. Mol. Biol. Rev. 64, 847-867 (2000).
  3. Kolenbrander, P. E. Oral microbial communities: biofilms, interactions, and genetic systems. Annu. Rev. Microbiol. 54, 413-437 (2000).
  4. O’Toole, G., Kaplan, H. B., Kolter, R. Biofilm formation as microbial development. Annu. Rev. Microbiol. 54, 49-79 (2000).
  5. Donlan, R. M. Biofilms: microbial life on surfaces. Emerg. Infect. Dis. 8, 881-890 (2002).
  6. Lopez, D., Vlamakis, H., Kolter, R. Biofilms. Cold Spring Harb. Perspect. Biol. 2, a000398-a000398 (2010).
  7. Branda, S. S., Vik, S., Friedman, L., Kolter, R. Biofilms: the matrix revisited. Trends Microbiol. 13, 20-26 (2005).
  8. Branda, S. S., Chu, F., Kearns, D. B., Losick, R., Kolter, R. A major protein component of the Bacillus subtilis biofilm matrix. Mol. Microbiol. 59, 1229-1238 (2006).
  9. Latasa, C., Solano, C., Penades, J. R., Lasa, I. Biofilm-associated proteins. C. R. Biol. 329, 849-857 (2006).
  10. O’Gara, J. P. ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol Lett. 270, 179-188 (2007).
  11. Chai, Y., Chu, F., Kolter, R., Losick, R. Bistability and biofilm formation in Bacillus subtilis. Mol. Microbiol. 67, 254-263 (2008).
  12. Chen, R., Guttenplan, S. B., Blair, K. M., Kearns, D. B. Role of the sigmaD-dependent autolysins in Bacillus subtilis population heterogeneity. J. Bacteriol. 191, 5775-5784 (2009).
  13. Guttenplan, S. B., Blair, K. M., Kearns, D. B. The EpsE flagellar clutch is bifunctional and synergizes with EPS biosynthesis to promote Bacillus subtilis biofilm formation. PLoS Genet. 6, e1001243-e1001243 (2010).
  14. Kearns, D. B., Losick, R. Cell population heterogeneity during growth of Bacillus subtilis. Genes Dev. 19, 3083-3094 (2005).
  15. Lopez, D., Vlamakis, H., Losick, R., Kolter, R. Paracrine signaling in a bacterium. Genes Dev. 23, 1631-1638 (2009).
  16. Veening, J. W., Smits, W. K., Hamoen, L. W., Jongbloed, J. D., Kuipers, O. P. Visualization of differential gene expression by improved cyan fluorescent protein and yellow fluorescent protein production in Bacillus subtilis. Appl. Environ. Microbiol. 70, 6809-6815 (2004).
  17. Veening, J. W., Smits, W. K., Hamoen, L. W., Kuipers, O. P. Single cell analysis of gene expression patterns of competence development and initiation of sporulation in Bacillus subtilis grown on chemically defined media. J. Appl. Microbiol. 101, 531-541 (2006).
  18. Veening, J. W., Kuipers, O. P., Brul, S., Hellingwerf, K. J., Kort, R. Effects of phosphorelay perturbations on architecture, sporulation, and spore resistance in biofilms of Bacillus subtilis. J. Bacteriol. 188, 3099-3109 (2006).
  19. Vlamakis, H., Aguilar, C., Losick, R., Kolter, R. Control of cell fate by the formation of an architecturally complex bacterial community. Genes Dev. 22, 945-953 (2008).
  20. Stewart, P. S., Franklin, M. J. Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 6, 199-210 (2008).
  21. Veening, J. W., Smits, W. K., Kuipers, O. P. Bistability, epigenetics, and bet-hedging in bacteria. Annu. Rev. Microbiol. 62, 193-210 (2008).
  22. Aguilar, C., Vlamakis, H., Guzman, A., Losick, R., Kolter, R. KinD is a checkpoint protein linking spore formation to extracellular-matrix production in Bacillus subtilis biofilms. MBio. 1, (2010).
  23. Lopez, D., Fischbach, M. A., Chu, F., Losick, R., Kolter, R. Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis. Proc. Natl. Acad. Sci. U.S.A. 106, 280-285 (2009).
  24. Lopez, D., Vlamakis, H., Losick, R., Kolter, R. Cannibalism enhances biofilm development in Bacillus subtilis. Mol. Microbiol. 74, 609-618 (2009).
  25. Arima, K., Kakinuma, A., Tamura, G. Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem. Biophys. Res. Commun. 31, 488-494 (1968).
  26. Romero, D., Vlamakis, H., Losick, R., Kolter, R. An accessory protein required for anchoring and assembly of amyloid fibres in B. subtilis biofilms. Mol. Microbiol. 80, 1155-1168 (2011).
  27. Hardwood, C. R., Cutting, S. M. . Molecular Biological Methods for Bacillus. , (1990).
  28. Novick, R. P. Genetic systems in staphylococci. Methods Enzymol. 204, 587-636 (1991).
  29. Yasbin, R. E., Young, F. E. Transduction in Bacillus subtilis by bacteriophage SPP1. J. Virol. 14, 1343-1348 (1974).
  30. Branda, S. S., Gonzalez-Pastor, J. E., Ben-Yehuda, S., Losick, R., Kolter, R. Fruiting body formation by Bacillus subtilis. Proc. Natl. Acad. Sci. U.S.A. 98, 11621-11626 (2001).
  31. Nakano, M. M. srfA is an operon required for surfactin production, competence development, and efficient sporulation in Bacillus subtilis. J. Bacteriol. 173, 1770-1778 (1991).
  32. Gonzalez-Pastor, J. E., Hobbs, E. C., Losick, R. Cannibalism by sporulating bacteria. Science. 301, 510-513 (2003).
  33. Aguilar, C., Vlamakis, H., Losick, R., Kolter, R. Thinking about Bacillus subtilis as a multicellular organism. Curr. Opin. Microbiol. 10, 638-643 (2007).
  34. Shapiro, J. A. Thinking about bacterial populations as multicellular organisms. Annu. Rev. Microbiol. 52, 81-104 (1998).
check_url/it/3796?article_type=t

Play Video

Citazione di questo articolo
Garcia-Betancur, J. C., Yepes, A., Schneider, J., Lopez, D. Single-cell Analysis of Bacillus subtilis Biofilms Using Fluorescence Microscopy and Flow Cytometry. J. Vis. Exp. (60), e3796, doi:10.3791/3796 (2012).

View Video