Summary

عزل الخلايا الدبقية الصغيرة الابتدائية المختلطة من زراعات الخلايا الغروية من المواليد الجدد الجرذ أنسجة المخ

Published: August 15, 2012
doi:

Summary

عزل الخلايا الدبقية الصغيرة الأولية من عدم التجانس الخلوية من الدماغ ضروري للتحقيق في دورها في كل الظروف الفسيولوجية والمرضية. هذا البروتوكول يصف العزلة الميكانيكية والمختلطة تقنية زراعة الخلايا التي توفر عائدات عالية ونقاء عالية، وقابلة للحياة خلايا دبقية صغيرة الرئيسي لل<em> في المختبر</em> الدراسة والتطبيقات المصب.

Abstract

Microglia account for approximately 12% of the total cellular population in the mammalian brain. While neurons and astrocytes are considered the major cell types of the nervous system, microglia play a significant role in normal brain physiology by monitoring tissue for debris and pathogens and maintaining homeostasis in the parenchyma via phagocytic activity 1,2. Microglia are activated during a number of injury and disease conditions, including neurodegenerative disease, traumatic brain injury, and nervous system infection 3. Under these activating conditions, microglia increase their phagocytic activity, undergo morpohological and proliferative change, and actively secrete reactive oxygen and nitrogen species, pro-inflammatory chemokines and cytokines, often activating a paracrine or autocrine loop 4-6. As these microglial responses contribute to disease pathogenesis in neurological conditions, research focused on microglia is warranted.

Due to the cellular heterogeneity of the brain, it is technically difficult to obtain sufficient microglial sample material with high purity during in vivo experiments. Current research on the neuroprotective and neurotoxic functions of microglia require a routine technical method to consistently generate pure and healthy microglia with sufficient yield for study. We present, in text and video, a protocol to isolate pure primary microglia from mixed glia cultures for a variety of downstream applications. Briefly, this technique utilizes dissociated brain tissue from neonatal rat pups to produce mixed glial cell cultures. After the mixed glial cultures reach confluency, primary microglia are mechanically isolated from the culture by a brief duration of shaking. The microglia are then plated at high purity for experimental study.

The principle and protocol of this methodology have been described in the literature 7,8. Additionally, alternate methodologies to isolate primary microglia are well described 9-12. Homogenized brain tissue may be separated by density gradient centrifugation to yield primary microglia 12. However, the centrifugation is of moderate length (45 min) and may cause cellular damage and activation, as well as, cause enriched microglia and other cellular populations. Another protocol has been utilized to isolate primary microglia in a variety of organisms by prolonged (16 hr) shaking while in culture 9-11. After shaking, the media supernatant is centrifuged to isolate microglia. This longer two-step isolation method may also perturb microglial function and activation. We chiefly utilize the following microglia isolation protocol in our laboratory for a number of reasons: (1) primary microglia simulate in vivo biology more faithfully than immortalized rodent microglia cell lines, (2) nominal mechanical disruption minimizes potential cellular dysfunction or activation, and (3) sufficient yield can be obtained without passage of the mixed glial cell cultures.

It is important to note that this protocol uses brain tissue from neonatal rat pups to isolate microglia and that using older rats to isolate microglia can significantly impact the yield, activation status, and functional properties of isolated microglia. There is evidence that aging is linked with microglia dysfunction, increased neuroinflammation and neurodegenerative pathologies, so previous studies have used ex vivo adult microglia to better understand the role of microglia in neurodegenerative diseases where aging is important parameter. However, ex vivo microglia cannot be kept in culture for prolonged periods of time. Therefore, while this protocol extends the life of primary microglia in culture, it should be noted that the microglia behave differently from adult microglia and in vitro studies should be carefully considered when translated to an in vivo setting.

Protocol

1. تشريح من المواليد الجدد الجرذ أنسجة المخ البرد ليبوفيتز لL-15 وسائل الإعلام مكيفة (ليبوفيتز L-15 + 0.1٪ BSA + 1٪ القلم / بكتيريا) إلى 4 درجة مئوية. وسائل الإعلام ثقافة الدافئة (DMEM + 10٪ + 1٪ FBS البنسلين / الستربتومايسين عقار) إلى 37 ?…

Discussion

في حين يستخدم بصورة روتينية على هذا البروتوكول لإنتاج الخلايا الدبقية الصغيرة نقية وصحية للتجارب البحثية، وإمعان النظر في الجوانب الفنية خلال المراحل الحاسمة من الإجراء الحد من التقلبات في الخلايا الدبقية الصغيرة المعزولة. الأول، أثناء تشريح أنسجة الدماغ من الفئر…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

بتمويل من برنامج جماعية في جامعة الخدمات النظامية.

Materials

Name of the reagent Company Catalog number Comments
60 mm x 15 mm Petri dishes Fisher brand 0875713A  
Sharp dissecting scissors Fine Science Tools 14094-11  
Dumont #7b forceps- standard tips, curved, 11cm Fine Science Tools 11270-20  
Dumont #5 forceps-standard tips, straight, 11 cm Fine Science Tools 11251-10  
50 ml conical centrifuge tubes VWR 89039-656  
5 ml serological pipettes Grenier Bio One 606180  
10 ml serological pipettes Grenier Bio One 607180  
100 μm sterile nylon cell strainer Falcon 35-2360  
75 cm2 tissue culture flasks Corning 430641  
Dulbecco’s minimal essential medium (DMEM) Gibco (Invitrogen) 31053-028  
Leibovitz’s L-15 medium Gibco (Invitrogen) 11415064  
Fetal bovine serum Gibco(Invitrogen) 16000-036  
Fetal equine serum Fisher SH3007402  
Penicillin-Streptomycin Gibco (Invitrogen) 15140163  
100% Ethanol The Warner Graham Company 64-17-5  
Phosphate buffered saline solution, 10X, pH 7.4 Quality Biological, inc. 119-069-131 1X in sterile, distilled water
Biohazard bags VWR 14220-028  
Haemocytometer Hausser Scientific 1492  
6-well cell culture plates with cellBIND surface Corning 3335  

Riferimenti

  1. Ransohoff, R. M., Perry, V. H. Microglial physiology: unique stimuli, specialized responses. Annu. Rev. Immunol. 27, 119-145 (2009).
  2. Raivich, G., Bohatschek, M., Kloss, C. U., Werner, A., Jones, L. L., Kreutzberg, G. W. Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res. Brain Res. Rev. 30, 77-105 (1999).
  3. Loane, D. J., Byrnes, K. R. Role of microglia in neurotrauma. Neurotherapeutics. 7, 245-265 (2010).
  4. Glass, C. K., Saijo, K., Winner, B., Marchetto, M. C., Gage, F. H. Mechanisms underlying inflammation in neurodegeneration. Cell. 140, 918-934 (2010).
  5. Pocock, J. M., Liddle, A. C. Microglial signalling cascades in neurodegenerative disease. Prog. Brain Res. 132, 555-565 (2001).
  6. Block, M. L., Hong, J. S. Chronic microglial activation and progressive dopaminergic neurotoxicity. Biochem. Soc. Trans. 35, 1127-1132 (2007).
  7. Barger, S. W., Basile, A. S. Activation of microglia by secreted amyloid percursor protein evokes release of glutamate by cystine exchange and attenuates synpatic function. J. Neurochem. 76, 846-854 (2001).
  8. Ni, M., Aschner, M. Neonatal rat primary microglia: isolation, culturing, and selected applications. Curr. Protoc. Toxicol. Chapter 12, Unit 12.17 (2010).
  9. Hassan, N. F., Rifat, S., Campbell, D. E., McCawley, L. J., Douglas, S. D. Isolation and flow cytometric characterization of newborn mouse brain-derived microglia maintained in vitro. J. Leukoc. Biol. 50, 86-92 (1991).
  10. Hassan, N. F., Prakash, K., Chehimi, J., McCawley, L. J., Douglas, S. D. Isolation and characterization of newborn rabbit brain-derived microglia. Clin. Immunol. Immunopathol. 59, 426-435 (1991).
  11. Hassan, N. F., Campbell, D. E., Rifat, S., Douglas, S. D. Isolation and characterization of human fetal brain-derived microglia in in vitro culture. Neuroscienze. 41, 149-158 (1991).
  12. Frank, M. G., Wieseler-Frank, J. L., Watkins, L. R., Maier, S. F. Rapid isolation of highly enriched and quiescent microglia from adult rat hippocampus: immunophenotypic and functional characteristics. J. Neurosci. Methods. 151, 121-130 (2006).
  13. Byrnes, K. R., Stoica, B., Loane, D. J., Riccio, A., Davis, M. I., Faden, A. I. Metabotropic glutamate receptor 5 activation inhibits microglial associated inflammation and neurotoxicity. Glia. 57, 550-560 (2009).
  14. Loane, D. J., Stoica, B. A., Pajoohesh-Ganji, A., Byrnes, K. R., Faden, A. I. Activation of metabotropic glutamate receptor 5 modulates microglial reactivity and neurotoxicity by inhibiting NADPH oxidase. J. Biol. Chem. 284, 15629-15639 (2009).
check_url/it/3814?article_type=t

Play Video

Citazione di questo articolo
Tamashiro, T. T., Dalgard, C. L., Byrnes, K. R. Primary Microglia Isolation from Mixed Glial Cell Cultures of Neonatal Rat Brain Tissue. J. Vis. Exp. (66), e3814, doi:10.3791/3814 (2012).

View Video