Summary

के विकास माइकोबैक्टीरियम क्षयरोग Biofilms

Published: February 15, 2012
doi:

Summary

माइकोबैक्टीरियम क्षयरोग दवा सहिष्णु biofilms रूपों जब कुछ शर्तों में सभ्य. यहाँ हम संवर्धन एम. के लिए विधियों का वर्णन तपेदिक biofilms और दवा सहिष्णु persisters की आवृत्ति का निर्धारण. इन प्रोटोकॉल आगे के अध्ययन के लिए उपयोगी दवा सहिष्णुता में एम. के तंत्र में हो जाएगा तपेदिक.

Abstract

Mycobacterium tuberculosis, the etiologic agent of human tuberculosis, has an extraordinary ability to survive against environmental stresses including antibiotics. Although stress tolerance of M. tuberculosis is one of the likely contributors to the 6-month long chemotherapy of tuberculosis 1, the molecular mechanisms underlying this characteristic phenotype of the pathogen remain unclear. Many microbial species have evolved to survive in stressful environments by self-assembling in highly organized, surface attached, and matrix encapsulated structures called biofilms 2-4. Growth in communities appears to be a preferred survival strategy of microbes, and is achieved through genetic components that regulate surface attachment, intercellular communications, and synthesis of extracellular polymeric substances (EPS) 5,6. The tolerance to environmental stress is likely facilitated by EPS, and perhaps by the physiological adaptation of individual bacilli to heterogeneous microenvironments within the complex architecture of biofilms 7.

In a series of recent papers we established that M. tuberculosis and Mycobacterium smegmatis have a strong propensity to grow in organized multicellular structures, called biofilms, which can tolerate more than 50 times the minimal inhibitory concentrations of the anti-tuberculosis drugs isoniazid and rifampicin 8-10. M. tuberculosis, however, intriguingly requires specific conditions to form mature biofilms, in particular 9:1 ratio of headspace: media as well as limited exchange of air with the atmosphere 9. Requirements of specialized environmental conditions could possibly be linked to the fact that M. tuberculosis is an obligate human pathogen and thus has adapted to tissue environments. In this publication we demonstrate methods for culturing M. tuberculosis biofilms in a bottle and a 12-well plate format, which is convenient for bacteriological as well as genetic studies. We have described the protocol for an attenuated strain of M. tuberculosis, mc27000, with deletion in the two loci, panCD and RD1, that are critical for in vivo growth of the pathogen 9. This strain can be safely used in a BSL-2 containment for understanding the basic biology of the tuberculosis pathogen thus avoiding the requirement of an expensive BSL-3 facility. The method can be extended, with appropriate modification in media, to grow biofilm of other culturable mycobacterial species.

Overall, a uniform protocol of culturing mycobacterial biofilms will help the investigators interested in studying the basic resilient characteristics of mycobacteria. In addition, a clear and concise method of growing mycobacterial biofilms will also help the clinical and pharmaceutical investigators to test the efficacy of a potential drug.

Protocol

1. एम. की बढ़ रहा है biofilms एक 250ml पेंच छाया बोतल में क्षयरोग मीडिया तैयारी: के.एच. 2 4 पीओ, 0.5g MgSO की 4, एल Asparagine के 4g, साइट्रिक एसिड की 2g, Ferric अमोनियम साइट्रेट की 0.05g, पानी की 900mL में ग्लिसरॉल के 60ml की 0.5g भंग. NaOH …

Discussion

तपेदिक (टीबी), माइकोबैक्टीरियम क्षयरोग के संक्रमण की वजह से वैश्विक सार्वजनिक स्वास्थ्य के लिए एक बड़ा खतरा बनी हुई है. दुनिया की आबादी का लगभग एक तिहाई asymptomatically रोगज़नक़ द्वारा संक्रमित होने का अनुम?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

काम से बाहर स्वास्थ्य और अमेरिकी फेफड़े एसोसिएशन के राष्ट्रीय संस्थान से वित्तीय सहायता के साथ किया गया.

Materials

Equipment and supplies SUPPLIER CATALOG NUMBER
Incubator VWR Model # 1923/25
Polystyrene culture bottles Fisher Scientific 03-374-300
12-well tissue culture plate VWR 62406-165
50-mL conical tubes VWR 89039-660
Rocker Thermo Scientific 57019-662
Chromatographic refrigerator VWR 55702-520
petri dish VWR 25384-342
     
REAGENT SUPPLIER CATALOG NUMBER
KH2PO4 (monobasic) EMD PX1565-1
MgSO4 Fisher M65-500
L-asparagine Sigma A4284-100G
citric acid Sigma C1857-100G
ferric ammonium citrate Sigma F5879-100G
glycerol EMD GX0185-5
NaOH Sigma S8045-500G
ZnSO4 Sigma Z4750-500G
D-pantothenic acid Sigma P2250-25G
Difco Middlebrook 7H9 Broth Becton Dickinson 271310
Middlebrook OADC Enrichment BBL 212351
Tween-80 Fisher T164-500
250mL storage bottle Corning 430281
12 well plates Falcon (BD) 353043
rifampicin Sigma R3501-1G
methanol J.T. Baker 9070-05
10mlLsyringe Becton Dickinson 301604
1-200μL pipet tips VWR 89079-458
parafilm M VWR PM-996
15mL centrifuge tube Greiner Bio-One 188-285
Difco Mycobacteria 7H11 Agar Becton Dickinson 283810
NaCl Fisher BP358-1
KCl Sigma P9333-500G
Na2HPO4 (dibasic) Sigma S0876-500G

Riferimenti

  1. Saltini, C. Chemotherapy and diagnosis of tuberculosis. Respir. Med. 100, 2085-2097 (2006).
  2. Hall-Stoodley, L., Stoodley, P. Biofilm formation and dispersal and the transmission of human pathogens. Trends Microbiol. 13, 7-10 (2005).
  3. Costerton, J. W., Stewart, P. S., Greenberg, E. P. Bacterial biofilms: a common cause of persistent infections. Science. 284, 1318-1322 (1999).
  4. Blankenship, J. R., Mitchell, A. P. How to build a biofilm: a fungal perspective. Curr Opin Microbiol. 9, 588-594 (2006).
  5. Henke, J. M., Bassler, B. L. Bacterial social engagements. Trends Cell Biol. 14, 648-656 (2004).
  6. Kolter, R., Losick, R. One for all and all for one. Science. 280, 226-227 (1998).
  7. Branda, S. S., Vik, S., Friedman, L., Kolter, R. Biofilms: the matrix revisited. Trends Microbiol. 13, 20-26 (2005).
  8. Ojha, A. GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell. 123, 861-873 (2005).
  9. Ojha, A. K. Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol. Microbiol. 69, 164-174 (2008).
  10. Ojha, A. K., Trivelli, X., Guerardel, Y., Kremer, L., Hatfull, G. F. Enzymatic hydrolysis of trehalose dimycolate releases free mycolic acids during mycobacterial growth in biofilms. J. Biol. Chem. 285, 17380-17389 (2010).
  11. Dye, C., Lonnroth, K., Jaramillo, E., Williams, B. G., Raviglione, M. Trends in tuberculosis incidence and their determinants in 134 countries. Bull World Health Organ. 87, 683-691 (2009).
  12. Jindani, A., Dore, C. J., Mitchison, D. A. Bactericidal and sterilizing activities of antituberculosis drugs during the first 14 days. Am. J. Respir. Crit. Care Med. 167, 1348-1354 (2003).
  13. Carter, G., Wu, M., Drummond, D. C., Bermudez, L. E. Characterization of biofilm formation by clinical isolates of Mycobacterium avium. J. Med. Microbiol. 52, 747-752 (2003).
  14. Hall-Stoodley, L., Lappin-Scott, H. Biofilm formation by the rapidly growing mycobacterial species Mycobacterium fortuitum. FEMS Microbiol. Lett. 168, 77-84 (1998).
  15. Alibaud, L. Temperature-dependent regulation of mycolic acid cyclopropanation in saprophytic mycobacteria: role of the Mycobacterium smegmatis 1351 gene (MSMEG_1351) in CIS-cyclopropanation of alpha-mycolates. J. Biol. Chem. 285, 21698-21707 (2010).
check_url/it/3820?article_type=t

Play Video

Citazione di questo articolo
Kulka, K., Hatfull, G., Ojha, A. K. Growth of Mycobacterium tuberculosis Biofilms. J. Vis. Exp. (60), e3820, doi:10.3791/3820 (2012).

View Video