Summary

Protease और एसिड उत्प्रेरित लेबलिंग रोजगार वर्कफ़्लोज़<sup18></sup> हे समृद्ध जल

Published: February 20, 2013
doi:

Summary

स्थिर आइसोटोप लेबलिंग workflows रोजगार<sup18></sup> O समृद्ध पानी (LEO workflows) मात्रात्मक और गुणात्मक प्रोटिओमिक्स अध्ययन के लिए बहुमुखी उपकरण हैं. Protease की सहायता (Paleo) workflows में,<sup18></sup> O-परमाणुओं proteolytic दरार और carboxyl ऑक्सीजन विनिमय प्रतिक्रियाओं proteases से मध्यस्थता से शुरू कर रहे हैं. कार्यप्रवाह एसिड उत्प्रेरित (Aleo) में,<sup18></sup> O-परमाणुओं कम पीएच में carboxyl ऑक्सीजन विनिमय से शुरू कर रहे हैं.

Abstract

Stable isotopes are essential tools in biological mass spectrometry. Historically, 18O-stable isotopes have been extensively used to study the catalytic mechanisms of proteolytic enzymes1-3. With the advent of mass spectrometry-based proteomics, the enzymatically-catalyzed incorporation of 18O-atoms from stable isotopically enriched water has become a popular method to quantitatively compare protein expression levels (reviewed by Fenselau and Yao4, Miyagi and Rao5 and Ye et al.6). 18O-labeling constitutes a simple and low-cost alternative to chemical (e.g. iTRAQ, ICAT) and metabolic (e.g. SILAC) labeling techniques7. Depending on the protease utilized, 18O-labeling can result in the incorporation of up to two 18O-atoms in the C-terminal carboxyl group of the cleavage product3. The labeling reaction can be subdivided into two independent processes, the peptide bond cleavage and the carboxyl oxygen exchange reaction8. In our PALeO (protease-assisted labeling employing 18O-enriched water) adaptation of enzymatic 18O-labeling, we utilized 50% 18O-enriched water to yield distinctive isotope signatures. In combination with high-resolution matrix-assisted laser desorption ionization time-of-flight tandem mass spectrometry (MALDI-TOF/TOF MS/MS), the characteristic isotope envelopes can be used to identify cleavage products with a high level of specificity. We previously have used the PALeO-methodology to detect and characterize endogenous proteases9 and monitor proteolytic reactions10-11. Since PALeO encodes the very essence of the proteolytic cleavage reaction, the experimental setup is simple and biochemical enrichment steps of cleavage products can be circumvented. The PALeO-method can easily be extended to (i) time course experiments that monitor the dynamics of proteolytic cleavage reactions and (ii) the analysis of proteolysis in complex biological samples that represent physiological conditions. PALeO-TimeCourse experiments help identifying rate-limiting processing steps and reaction intermediates in complex proteolytic pathway reactions. Furthermore, the PALeO-reaction allows us to identify proteolytic enzymes such as the serine protease trypsin that is capable to rebind its cleavage products and catalyze the incorporation of a second 18O-atom. Such “double-labeling” enzymes can be used for postdigestion 18O-labeling, in which peptides are exclusively labeled by the carboxyl oxygen exchange reaction. Our third strategy extends labeling employing 18O-enriched water beyond enzymes and uses acidic pH conditions to introduce 18O-stable isotope signatures into peptides.

Protocol

प्रस्तुत लियो workflows प्रोटीन की स्थिर आइसोटोप लेबलिंग हज़म और सिंथेटिक पेप्टाइड्स के लिए अनुमति देते हैं. ये समय बेशक प्रयोगों (1 चित्रा) तुलनात्मक और मात्रात्मक प्रोटिओमिक्स के रूप में के रूप में …

Representative Results

हम कार्यप्रवाह Paleo-TimeCourse का इस्तेमाल करने के लिए गतिशील 18 हे पेप्टाइड दरार proteolytic एंजाइमों द्वारा उत्पन्न उत्पादों में स्थिर आइसोटोप के समावेश की निगरानी. दृष्टिकोण प्रस्तुत विभिन्न सब्सट्रेट और protease ?…

Discussion

स्थिर आइसोटोप लेबलिंग और एक समय हल तरीके से उच्च संकल्प मास स्पेक्ट्रोमेट्री के संयोजन, paleo – TimeCourse विधि पेप्टाइड उत्पादों की पीढ़ी के एक गतिशील विश्लेषण के लिए अनुमति देता है. परख मात्रात्मक और गुणात्मक …

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

यह काम NIH / NIDCR 1R01DE019796 अनुदान द्वारा समर्थित किया गया.

Materials

Name of material Company Catalogue number
PepClean C-18 Spin Columns Thermo 89870
Opti-TOF 384 MALDI target plate AB SCIEX 1016629
4800 MALDI TOF/TOF AB SCIEX

Table 1. Materials

Name of reagent Company Catalogue number
Alpha cyano-4-hydroxycinnamic acid Sigma Aldrich 70990-1G-F
Bovine serum albumin (BSA) Sigma Aldrich A3294-10G
Dithiothreitol (DTT) Acros 16568-0050
Iodoacetamide (IAM) Sigma Aldrich 1149-5G
Endothelin converting enzyme-1 (ECE-1) R&D Systems 1784-ZN
Trypsin Gold Promega V5280
Water-18O, 97 atom % 18O Sigma Aldrich 329878-1G
Trifluoroacetic acid (TFA) Thermo 28904
Mass Standards Kit for Calibration of AB SCIEX TOF/TOF instruments AB SCIEX 4333604

Table 2. Reagents

Riferimenti

  1. Bender, M., Kemp, K. Oxygen-18 Studies of the Mechanism of the alpha-Chymotrypsin-catalyzed Hydrolysis of Esters. Journal of the American Chemical Society. 79, 111-116 (1957).
  2. Sharon, N., Grisaro, V., Neumann, H. Pepsin-catalyzed exchange of oxygen atoms between water and carboxylic acids. Archives of Biochemistry and Biophysics. 97, 219-221 (1962).
  3. Antonov, V., Ginodman, L., Rumsh, L., Kapitannikov, Y., Barshevskaya, T., Yavashev, L., Gurova, A., Volkova, L. Studies on the mechanisms of action of proteolytic enzymes using heavy oxygen exchange. European Journal of Biochemistry. 117, 195-200 (1981).
  4. Fenselau, C., Yao, X. 18O2-labeling in quantitative proteomic strategies: a status report. Journal of Proteome Research. 8, 2140-2143 (2009).
  5. Miyagi, M., Rao, K. C. S. Proteolytic 18O-labeling strategies for quantitative proteomics. Mass Spectrom. Rev. 26, 121-136 (2007).
  6. Ye, X., Luke, B., Andresson, T., Blonder, J. 18O stable isotope labeling in MS-based proteomics. Brief Funct. Genomic Proteomic. 8, 136-144 (2009).
  7. Bantscheff, M., Schirle, M., Sweetman, G., Rick, J., Kuster, B. Quantitative mass spectrometry in proteomics: a critical review. Analytical and Bioanalytical Chemistry. 389, 1017-1031 (2007).
  8. Yao, X., Afonso, C., Fenselau, C. Dissection of proteolytic 18O labeling: endoprotease-catalyzed 16O-to-18O exchange of truncated peptide substrates. Journal of Proteome Research. 2, 147-152 (2003).
  9. Robinson, S., Niles, R. K., Witkowska, H. E., Rittenbach, K. J., Nichols, R. J., Sargent, J. A., Dixon, S. E., Prakobphol, A., Hall, S. C., Fisher, S. J., Hardt, M. A mass spectrometry-based strategy for detecting and characterizing endogenous proteinase activities in complex biological samples. Proteomics. 8, 435-445 (2008).
  10. Cottrell, G. S., Padilla, B. E., Amadesi, S., Poole, D. P., Murphy, J. E., Hardt, M., Roosterman, D., Steinhoff, M., Bunnett, N. W. Endosomal endothelin-converting enzyme-1: a regulator of beta-arrestin-dependent ERK signaling. The Journal of Biological Chemistry. 284, 22411-22425 (2009).
  11. Subramanian, S., Hardt, M., Choe, Y., Niles, R. K., Johansen, E. B., Legac, J., Gut, J., Kerr, I. D., Craik, C. S., Rosenthal, P. J. Hemoglobin cleavage site-specificity of the Plasmodium falciparum cysteine proteases falcipain-2 and falcipain-3. PLoS ONE. 4, e5156 (2009).
  12. Mason, C., Therneau, T., Eckel-Passow, J., Johnson, K., Oberg, A., Olson, J., Nair, K., Muddiman, D. C., Bergen, H. A method for automatically interpreting mass spectra of 18O-labeled isotopic clusters. Molecular & Cellular Proteomics. 6, 305-318 (2007).
  13. Hicks, W. A., Halligan, B. D., Slyper, R. Y., Twigger, S. N., Greene, A. S., Olivier, M. Simultaneous quantification and identification using 18O labeling with an ion trap mass spectrometer and the analysis software application “ZoomQuant&quot. J. Am. Soc. Mass Spectrom. 16, 916-925 (2005).
  14. Qian, W. -. J., Petritis, B. O., Nicora, C. D., Smith, R. D. Trypsin-catalyzed oxygen-18 labeling for quantitative proteomics. Methods Mol. Biol. 753, 43-54 (2011).
  15. Ye, X., Luke, B. T., Johann, D. J., Ono, A., Prieto, D. A., Chan, K. C., Issaq, H. J., Veenstra, T. D., Blonder, J. Optimized method for computing (18)O/(16)O ratios of differentially stable-isotope labeled peptides in the context of postdigestion (18)O exchange/labeling. Anal. Chem. 82 (18), 5878-5886 (2010).
  16. Hardt, M., Lam, D. K., Dolan, J. C., Schmidt, B. L. Surveying proteolytic processes in human cancer microenvironments by microdialysis and activity-based mass spectrometry. Proteomics Clin. Appl. 5, 636-643 (2011).
  17. Gattiker, A., Bienvenut, W., Bairoch, A., Gasteiger, E. FindPept, a tool to identify unmatched masses in peptide mass fingerprinting protein identification. Proteomics. 2, 1435-1444 (2002).
  18. Shevchenko, A., Chernushevich, I., Ens, W., Standing, K. G., Thomson, B., Wilm, M., Mann, M. Rapid ‘de novo’ peptide sequencing by a combination of nanoelectrospray, isotopic labeling and a quadrupole/time-of-flight mass spectrometer. Rapid Commun. Mass Spectrom. 11, 1015-1024 (1997).
  19. Niles, R. K., Witkowska, H. E., Allen, S., Hall, S. C., Fisher, S. J., Hardt, M. Acid-catalyzed oxygen-18 labeling of peptides. Analytical Chemistry. 81, 2804-2809 (2009).
  20. Bender, M., Stone, R., Dewey, R. Kinetics of Isotopic Oxygen Exchange between Substituted Benzoic Acids and Water. Journal of the American Chemical Society. 78, 319-321 (1956).
  21. Kuster, B., Schirle, M., Mallick, P., Aebersold, R. Scoring proteomes with proteotypic peptide probes. Nature Reviews Molecular Cell Biology. 6, 577-583 (2005).
check_url/it/3891?article_type=t

Play Video

Citazione di questo articolo
Klingler, D., Hardt, M. Protease- and Acid-catalyzed Labeling Workflows Employing 18O-enriched Water. J. Vis. Exp. (72), e3891, doi:10.3791/3891 (2013).

View Video