Summary

作为寄主植物挥发物的筛选工具electroantennographic生物活性

Published: May 06, 2012
doi:

Summary

一个迅速屏幕寄主植物挥发的成人肚脐orangeworm的电生理反应(测量方法<em> Amyelois transitella</em>)天线,单一组件和通过electroantennographic分析混纺证明。

Abstract

植物挥发物发挥重要作用,在植物,昆虫相互作用。食草昆虫利用植物挥发物,如米蛾利他素,找到他们的寄主植物。1,2当寄主植物是一个重要农艺商品饲养害虫的损害,可以给种植者造成严重的经济损失。因此,米蛾利他素可以被用来作为这些昆虫引诱或混淆,因此,提供一个环境友好的替代杀虫剂控制昆虫的引诱。不幸的是,植物能发出不同的成分和比例的排放量取决于物候的一个巨大的数量挥发商品或一天的时间。这使得生物活性成分的鉴定或一个艰难的过程挥发性成分的混合物。为了帮助确定我们聘请的实验室为基础的筛选生物活性electroantennography(东亚运动会)的寄主植物挥发物的活性成分。东亚运动会是一个有效的工具来评估和recorð电生理通过他们的触角感受器的昆虫的嗅觉反应。东亚运动会的筛选过程,可以帮助减少一些测试,以确定有前途的生物活性成分的挥发。然而,东亚运动会的生物测定只提供有关受体激活的信息。它不提供有关昆虫行为的化合物引起的类型的信息,这可能是作为引诱剂,驱虫剂或其他类型的行为反应。挥发引出由东亚运动会上,相对适当的阳性对照显着的反应,通常采取进一步虫害的行为反应测试。实验设计将详细的方法来筛选基于杏仁寄主植物挥发物的触角电生理反应测量成人虫害肚脐orangeworm(Amyelois transitella)单部件和组件的简单混合物通过东亚运动会的生物活性4,5。该方法利用两个前cised天线置于整个一个“叉”的电极支架。这里展示的协议提出了一种快速,高通量筛选挥发物的标准化方法。每个波动是在一组,固定金额,以规范的刺激水平,从而使触角反应相对chemoreceptivity的指示。阴性对照,有助于消除粉扑残留溶剂和机械力的电生理反应。阳性对照组(在这种情况下苯乙酮)是一个单一的化合物,已引起了男性和女性的肚脐orangeworm(NOW)蛾的一致响应。一个的额外semiochemical标准,提供一致的响应,并用于生物活性的研究与男性现在蛾是(Z,Z)-11,13-hexdecadienal,从女性的生产性信息素醛组件。6-8

Protocol

1。东亚运动会筛选检测寄主植物挥发物的制备适当的标识和认证通过的GC-MS挥发后,执行训练班粉扑每个可用挥发性分析。初步筛选可以是低复制数量为每个性别的触角反应(n = 3-5),以实现在很短的时间量( 见表1)相对chemoreceptivity的指示。 准备在5毫克/毫升戊烷浓度的每一个波动的解决方案。紧紧密封和冷藏直到准备立即使用(例如,苯乙酮,密度= 1.03克/毫升,?…

Discussion

作为一种生物活性,以确定目标昆虫的化学感受反应电位录音使用相当普遍,许多可以利用探测器从气相色谱(GC-EAD)的污水作为东亚运动会的研究在文献中发现。9,10的方法证明将提供等量的挥发性成分与自信分配的相对响应的高重复的快速筛选。 AutoSpike在Syntech软件程序是为筛选挥发好的方案,因为它是能够提供最大挠度从天线的幅度信号( 图1-3),这是我们这里提出的?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

根据美国农业部CRIS软件项目5325-42000-037-00D与CRADA 58-3K95-7-1198和TFCA 58-5325-8-419的结果进行了这项研究。作者感谢Suterra的礼物(z,z)-11,13-hexadecadienal,希格比B.富有成效的讨论,提供技术援助和J.贝克。

Materials

Name of the reagent Company Catalogue number Comments
Acetophenone Alfa-Aesar A12727 Female positive control
(Z,Z)-11,13-Hexadecadienal Suterra   Male positive control
α-Humulene Aldrich 53675 Sesquiterpene
2-Undecanone Aldrich U1303 Fatty acid derivative
2-Phenylethanol Aldrich 77861 Benzenoid
Pentane EMD PX0167-1 Solvent
4-Channel acquisition controller Syntech IDAC-4  
EAG probe, pre-amplifier Syntech Type PRG-2  
Antenna holder Syntech For PRG-2 Fork electrode
Stimulus controller Syntech CS-55 Air flow and puffs
Spectra Electrode Gel Parker 12-02  
Bioassay discs Whatman 2017-006 6 mm
Pasteur pipets VWR 14673-010 5 ¾” (14.6 cm)
Parafilm M Bemis PM-992  

Riferimenti

  1. Bruce, T. J. A., Wadhams, L. J., Woodcock, C. M. Insect host location: a volatile situation. Trends in Plant Sci. 10, 1360-1385 (2005).
  2. Unsicker, S. B., Kunert, G., Gershenzon, J. Protective perfumes: the role of vegetative volatiles in plant defense against herbivores. Curr. Opin. Plant Biol. 12, 479-485 (2009).
  3. Norin, T. Semiochemicals for insect pest management. Pure Appl. Chem. 79, 2129-2136 (2007).
  4. Beck, J. J., Merrill, G. B., Higbee, B. S., Light, D. M., Gee, W. S. In situ seasonal study of the volatile production of almonds (Prunus dulcis) var. ‘nonpareil’ and relationship to navel orangeworm. J. Agric. Food Chem. 57, 3749-3753 (2009).
  5. Beck, J. J., Higbee, B. S., Gee, W. S., Dragull, K. Ambient orchard volatiles from California almonds. Phytochem. Lett. 4, 199-202 (2011).
  6. Coffelt, J. A., Vick, K. W., Sonnet, P. E., Doolittle, R. E. Isolation identification, and synthesis of a female sex pheromone of the navel orangeworm, Amyelois transitella (Lepidoptera: Pyralidae). J. Chem. Ecol. 5, 955-933 (1979).
  7. Leal, W. S., Parra-Pedrazzoli, A. L., Kaissling, K. -. E., Morgan, T. I., Zalom, F. G., Pesak, D. J., Dundulis, E. A., Burks, C. S., Higbee, B. S. Unusual pheromone chemistry in the navel orangeworm: novel sex attractants and a behavioral antagonist. Naturwissenschaften. 92, 139-146 (2005).
  8. Kanno, H., Kuenen, L. P. S., Klingler, K. A., Millar, J. G., Carde, R. T. Attractiveness of a four-component pheromone blend to male navel orangeworm moths. J. Chem. Ecol. 36, 584-591 (2010).
  9. Takacs, S., Gries, G., Gries, R. Semiochemical-mediated location of host habitat by Apanteles carpatus (Say) (Hymenoptera: Braconidae), a parasitoid of cloths moth larvae. J. Chem. Ecol. 23, 459-472 (1997).
  10. Karimifar, N., Gries, R., Khaskin, G., Gries, G. General food semiochemicals attract omnivorous German cockroaches, Blattella germanica. J. Agric. Food Chem. 59, 1330-1337 (2011).
  11. Molyneux, R. J., Schieberle, P. Compound identification: a Journal of Agricultural and Food Chemistry perspective. J. Agric. Food Chem. 55, 4625-4629 (2007).
  12. Marion-Poll, F., Thiery, D. Dynamics of EAG responses to host-plant volatiles delivered by a gas chromatograph. Entomol. Exp. Appl. 80, 120-123 (1996).
  13. Beck, J. J., Higbee, B. S., Merrill, G. B., Roitman, J. N. Comparison of volatile emissions from undamaged and mechanically damaged almonds. J. Sci. Food Agric. 88, 1363-1368 (2008).
  14. Lucas, P., Renou, M., Tellier, F., Hammoud, A., Audemard, H., Descoins, C. Electrophysiology and field activity of halogenated analogs of (E,E)-8-10-dodecadien-1-ol, the main pheromone component in codling moth (Cydia pomonella L.). J. Chem. Ecol. 20, 489-503 (1994).
  15. Rodriguez-Saona, C., Poland, T. M., Miller, J. R., Stelinski, L. L., Grant, G. G., de Groot, P., Buchan, L., MacDonald, L. Behavioral and electrophysiological responses of the emerald ash borer, Agrilus planipennis, to induced volatiles of Manchurian ash, Fraxinus mandshurica. Chemoecology. 16, 75-86 (2006).
  16. Burks, C. S., Brandl, D. G. Seasonal abundance of navel orangeworm (Leipidoptera: Pyralidae) in figs and effect of peripheral aerosol dispensers on sexual communication. J. Insect Sci. 4, 1-8 (2004).
check_url/it/3931?article_type=t

Play Video

Citazione di questo articolo
Beck, J. J., Light, D. M., Gee, W. S. Electroantennographic Bioassay as a Screening Tool for Host Plant Volatiles. J. Vis. Exp. (63), e3931, doi:10.3791/3931 (2012).

View Video