Summary

在一个容器的支架部署在监测的墙力学

Published: May 08, 2012
doi:

Summary

动脉支架诱导应变分布的特点是使用光学表面应变测量系统。这个可视化技术是用于获取到主机上的船只的影响支架植入术的见解。

Abstract

临床试验报告各1支架设计不同的再狭窄率。据推测,动脉壁支架致应变浓度导致组织损伤,从而启动再狭窄2-7。这一假说需要进一步调查,包括更好地量化,对动脉支架植入后的非均匀应变分布。非接触式表面应变支架动脉的测量方法,提出了这项工作。阿拉米斯立体声光学表面应变测量系统使用两个光学高速摄影机捕捉每个参考点的运动,并解决了三维株,变形,表面8,9。作为部署成一个随机对比它的外表面喷涂或绘制图案的乳胶血管网状支架,表面应变记录在每一个瞬间变形。计算的应变分布,然后可以用来了解劳“CAL病变反应,验证计算模型,并制订进一步的体内研究假设。

Protocol

1。乳胶容器的制备修复乳胶船只刺软管连接,这是一个坚固的工作台固定两端。 测量面积乳胶船只,以确定视野的利息。感兴趣的支架试验区应集中之间的铁丝网软管接头,包括约一英寸支架两侧,以观察支架区以外的菌株。 记录从一个倒钩软管接头的外边缘之间的连接器,该也是乳胶船只的近似中心的中心位置的距离。转换到导管测量了导管支架中心的距离。然后标记?…

Discussion

立体声光学表面应变测量系统用于测量在平面议案变形,表面不接触标本本地菌株。该系统采用两个高速光学相机随机对比把表面上的模式构建与精度高解决表面株的准确测量每个点的议案,采取图片。

应当指出的是,所需的对比模式需要坚持的表面充分,足以提供准确的测量。此外,有针对性的取样面积需要有良好的照明,无眩光,相机来区分的对比格局的变动。否则,?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

部分支持这项研究是由美国航空航天局内布拉斯加空间格兰特和国家科学基金会资助号0926880。

Materials

Equipment Used Company Catalogue number Comments
ARAMIS Camera System GOM: Optical Measuring Techniques    
PALMAZ Genesis TRANSHEPATIC BILIARY STENT Cordis Corporation PG5910B Balloon-expandable stent
Z-MED Balloon Dilatation Catheter B. Braun Medical Inc. PDZ336 Balloon dilatation catheter

Riferimenti

  1. Fischman, D. L., Leon, M. B., Baim, D. S. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. Stent Restenosis Study Investigators. N. Engl. J. Med. 331, 496-501 (1994).
  2. Abul Hasan Muhammad Bashar, T. K. Mechanical Properties of Various Z-Stent Designs: An Endovascular Stent-Grafting Perspective. Artificial Organs. 27, 714-721 (2003).
  3. Nuutinen, J. u. h. a. -. P. e. k. k. a. Mechanical properties and in vitro degradation of bioabsorbable self-expanding braided stents. Journal of Biomaterials Science — Polymer Edition. , 255-266 (2003).
  4. C. Schulz, R. A. Coronary stent symmetry and vascular injury determine experimental restenosis. Heart. 83, 462-467 (2000).
  5. Jiménez, J. M., Davies, P. F. Hemodynamically Driven Stent Strut Design. Annals of Biomedical Engineering. 1483, (2009).
  6. Johnston, C. R. The Mechanical Properties of Endovascular Stents: An In Vitro Assessment. Cardiovascular Engineering: An International Journal. 10, 128-135 (2010).
  7. Mejia, J. u. a. n. Evaluation of the effect of stent strut profile on shear stress distribution using statistical moments. Biomedical Engineering Online. , 1-10 (2009).
  8. . . ARAMIS User Manual. , (2009).
  9. Chesler, N. C., Thompson-Figueroa, J., Millburne, K. Measurements of Mouse Pulmonary Biomechanics. Journal of Biomechanical Engineering. 126, 309-314 (2004).
  10. de Korte, C. L., Sierevogel, M. J., Mastik, F., Strijder, C., Schaar, J. A., Velema, E., Pasterkamp, G., Serruys, P. W., van der Steen, A. F. W. Identification of Atherosclerotic Plaque Components With Intravascular Ultrasound Elastography In Vivo A Yucatan Pig Study. Circulation. 105, 1627-1630 (2002).
check_url/it/3945?article_type=t

Play Video

Citazione di questo articolo
Steinert, B. D., Zhao, S., Gu, L. Monitoring the Wall Mechanics During Stent Deployment in a Vessel. J. Vis. Exp. (63), e3945, doi:10.3791/3945 (2012).

View Video