Summary

खमीर एकाधिक जीन विलोपन ले उपभेदों की पीढ़ी के लिए ग्रीन दानव प्रक्रिया

Published: December 15, 2012
doi:

Summary

ग्रीन दानव विधि एकाधिक एक संवाददाता जीन एन्कोडिंग हरे फ्लोरोसेंट प्रोटीन के साथ चिह्नित विलोपन के तेजी से विधानसभा के लिए सक्षम बनाता है. इस विधि खमीर उपभेदों विलोपन के यौन वर्गीकरण के दोहराया चक्र और अधिक विलोपन कोशिकाओं को ले जाने की प्रतिदीप्ति आधारित संवर्धन के माध्यम से ड्राइविंग पर आधारित है.

Abstract

Phenotypes for a gene deletion are often revealed only when the mutation is tested in a particular genetic background or environmental condition1,2. There are examples where many genes need to be deleted to unmask hidden gene functions3,4. Despite the potential for important discoveries, genetic interactions involving three or more genes are largely unexplored. Exhaustive searches of multi-mutant interactions would be impractical due to the sheer number of possible combinations of deletions. However, studies of selected sets of genes, such as sets of paralogs with a greater a priori chance of sharing a common function, would be informative.

In the yeast Saccharomyces cerevisiae, gene knockout is accomplished by replacing a gene with a selectable marker via homologous recombination. Because the number of markers is limited, methods have been developed for removing and reusing the same marker5,6,7,8,9,10. However, sequentially engineering multiple mutations using these methods is time-consuming because the time required scales linearly with the number of deletions to be generated.

Here we describe the Green Monster method for routinely engineering multiple deletions in yeast11. In this method, a green fluorescent protein (GFP) reporter integrated into deletions is used to quantitatively label strains according to the number of deletions contained in each strain (Figure 1). Repeated rounds of assortment of GFP-marked deletions via yeast mating and meiosis coupled with flow-cytometric enrichment of strains carrying more of these deletions lead to the accumulation of deletions in strains (Figure 2). Performing multiple processes in parallel, with each process incorporating one or more deletions per round, reduces the time required for strain construction.

The first step is to prepare haploid single-mutants termed ‘ProMonsters,’ each of which carries a GFP reporter in a deleted locus and one of the ‘toolkit’ loci—either Green Monster GMToolkit-a or GMToolkit-α at the can1Δ locus (Figure 3). Using strains from the yeast deletion collection12, GFP-marked deletions can be conveniently generated by replacing the common KanMX4 cassette existing in these strains with a universal GFPURA3 fragment. Each GMToolkit contains: either the a– or α-mating-type-specific haploid selection marker1 and exactly one of the two markers that, when both GMToolkits are present, collectively allow for selection of diploids.

The second step is to carry out the sexual cycling through which deletion loci can be combined within a single cell by the random assortment and/or meiotic recombination that accompanies each cycle of mating and sporulation.

Protocol

1. ProMonsters का सृजन एक 2-GFP मार्कर teto और प्लाज्मिड (एम्पीसिलीन प्रतिरोध) pYOGM012 दृश्यों के साथ प्राइमरों का उपयोग करने से URA3 मार्कर amplifying द्वारा सार्वभौमिक GFP प्रतिस्थापन कैसेट तैयार: GGATCCCCGGGTTAATTAAGG…

Representative Results

When an a-haploid strain carrying four GFP-marked deletions (ycl033cΔ yer042wΔ ykl069wΔ yol118cΔ) was crossed with an α-haploid strain carrying four deletions (ycl033cΔ ydl242wΔ ydl227cΔ yer042wΔ), with two deletions (ycl033cΔ yer042wΔ) shared by two strains, a representative result was obtained. The mating mixture was cultured in YPDA medium containing G418 and Nat to select diploids. The resulting diploids were…

Discussion

जैसा कि हम ग्रीन दानव दृष्टिकोण विकसित की है, हम अलग GFP प्रतिस्थापन कैसेट के बीच पुनर्संयोजन की संभावना के साथ संबंध रहे थे, जिससे जीनोम पुनर्व्यवस्था. इस संभावना के खिलाफ Mitigating कोशिकाओं है कि सफलतापूर्व…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

यह काम अमेरिकी रक्षा एडवांस्ड रिसर्च प्रोजेक्ट्स एजेंसी अनुबंध N66001-12-C-4039 के द्वारा FPRFPR वाईएस, अल्फ्रेड पी. स्लोअन फाउंडेशन से एक आरएसएल के लिए अनुदान, और अनुदान स्वास्थ्य के अमेरिकी राष्ट्रीय संस्थानों HG003224 R01 और R21 CA130266 समर्थित किया गया था यह भी उन्नत अनुसंधान के लिए कनाडा संस्थान से एक फैलोशिप और कनाडा उत्कृष्टता अनुसंधान अध्यक्षों कार्यक्रम द्वारा समर्थित है.

Materials

Name of the reagent or instrument Company Catalogue number Comments (optional)
G418 Sigma-Aldrich A1720 Dissolve in water and filter-sterilize (0.2-μm filter). Stock concentration: 200 mg/ml. Store at 4 °C.
ClonNAT (nourseothricin) WERNER BioAgents 5001000 Dissolve in water and filter-sterilize (0.2-μm filter). Stock concentration: 100 mg/ml. Store at 4 °C.
Doxycycline Sigma-Aldrich D9891 Dissolve in 50% ethanol and filter-sterilize (0.2-μm filter). Stock concentration: 10 mg/ml. Make fresh every four weeks. Shield from light using aluminum foil and store at 4 °C.
Zymolyase ZymoResearch E1005
Difco yeast nitrogen base w/o amino acids BD 291940
Revolver (rotator for tubes) Labnet H5600
Enduro Gel XL electrophoresis unit Labnet E0160
Sonifier 450 Branson 101-063-198
Microtip for Sonifier 450 Branson 101-148-062
FACSAria cell sorter BD
MoFlo cell sorter Beckman-Coulter
Biomek FX or equivalent robot Beckman Coulter Optional. For setting up genotyping PCRs.

Riferimenti

  1. Tong, A. H., et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science’s STKE. 294, 2364-23 (2001).
  2. Hillenmeyer, M. E., et al. The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science. 320, 362-365 (2008).
  3. Beh, C. T., Cool, L., Phillips, J., Rine, J. Overlapping functions of the yeast oxysterol-binding protein homologues. Genetica. 157, 1117 (2001).
  4. Wieczorke, R., et al. Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS letters. 464, 123-128 (1999).
  5. Alani, E., Cao, L., Kleckner, N. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetica. 116, 541-545 (1987).
  6. Akada, R., et al. PCR-mediated seamless gene deletion and marker recycling in Saccharomyces cerevisiae. Yeast. 23, 399-405 (2006).
  7. Guldener, U., Heck, S., Fielder, T., Beinhauer, J., Hegemann, J. H. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic acids research. 24, 2519 (1996).
  8. Delneri, D., et al. Exploring redundancy in the yeast genome: an improved strategy for use of the cre-loxP system. Gene. 252, 127-135 (2000).
  9. Storici, F., Lewis, L. K., Resnick, M. A. In vivo site-directed mutagenesis using oligonucleotides. Nat. Biotech. 19, 773-776 (2001).
  10. Noskov, V. N., Segall-Shapiro, T. H., Chuang, R. Tandem repeat coupled with endonuclease cleavage (TREC): a seamless modification tool for genome engineering in yeast. Nucl. Acids Res. 38, 2570-2576 (2010).
  11. Suzuki, Y., et al. Knocking out multigene redundancies via cycles of sexual assortment and fluorescence selection. Nat. Methods. 8, 159-164 (2011).
  12. Winzeler, E. A. Functional Characterization of the S. Genome by Gene Deletion and Parallel Analysis. Science. 285, 901-906 (1999).
  13. Woods, R. A., Gietz, R. D. High-efficiency transformation of plasmid DNA into yeast. Methods Mol. Biol. 177, 85-97 (2001).
  14. Hughes, T. R., et al. Widespread aneuploidy revealed by DNA microarray expression profiling. Nature. 25, 333-337 (2000).
  15. Goldstein, A. L., McCusker, J. H. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast. 15, 1541-1553 (1999).
  16. Newman, J. R. S., et al. Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature. 441, 840-846 (2006).
  17. Rosenfeld, N., Young, J. W., Alon, U., Swain, P. S., Elowitz, M. B. Gene regulation at the single-cell level. Science. 307, 1962 (2005).
check_url/it/4072?article_type=t

Play Video

Citazione di questo articolo
Suzuki, Y., Stam, J., Novotny, M., Yachie, N., Lasken, R. S., Roth, F. P. The Green Monster Process for the Generation of Yeast Strains Carrying Multiple Gene Deletions. J. Vis. Exp. (70), e4072, doi:10.3791/4072 (2012).

View Video