Summary

采样使用超探头棒棒糖样的土著人的唾液多肽:简化和增强肽的临床质谱检测

Published: August 07, 2012
doi:

Summary

考虑为今后的临床应用唾液取样,棒棒糖般超滤(LLUF)的探针制作,以适应在人类口腔。直接未消化唾液NanoLC-LTQ质谱分析表明LLUF探头的能力,消除大量的蛋白质和高丰度蛋白,使更多检测​​低丰度肽。

Abstract

虽然人类唾液蛋白质和多肽已显示1-2 majorly确定从唾液蛋白的胰蛋白酶消化。土著人的唾液多肽的鉴定没有事先与外源酶消化成为当务之急,因为在人类唾液中的原生肽提供的潜在价值,为诊断疾病,预测疾病的进展,并监测治疗效果。适当的采样是提高土著人的唾液多肽鉴定的关键一步。抽样涉及人类唾液离心去除碎片3-4传统方法可能太费时,是适用于临床使用。此外,通过离心去除碎片可能无法清理,大部分受感染的病原体和去除高丰度蛋白质,常常阻碍了鉴定低丰度多肽。

传统的蛋白质组学方法,PRI共轭玛利莲利用二维凝胶电泳(2-DE)凝胶与凝胶消化能找出很多的唾液蛋白质5-6。然而,这种方法一般是不够敏感的检测低丰度的肽/蛋白质。液相色谱 – 质谱(LC-MS法)为基础的蛋白质组学是一种替代,它可以识别2-DE分离,恕不另行蛋白质。虽然这种方法提供了更高的灵敏度,它一般需要事先样品预分馏7预消化和胰蛋白酶,这使得它难以用于临床。

规避由于样品制备质谱的障碍,我们已经开发出一种技术叫做毛细管超滤(CUF)探针8-11。从我们的实验室数据表明,的CUF探测器能够捕捉各种动物在一个充满活力和微创的方式8微环境的蛋白质在体内 11。没有离心是必要的,因为通过简单的样品采集过程中撤回注射器负压创建。 CUF探针结合的LC-MS已成功确定了胰蛋白酶消化的蛋白质8-11。在这项研究中,我们创建一个棒棒糖般的超滤(LLUF)探头,可以很容易地适合于人类口腔升级的超取样技术。没有胰蛋白酶消化的LC-MS直接分析表明,人类唾液本国包含许多肽来自各种蛋白质的片段。 LLUF探头采样唾液避免离心,但有效地消除了许多大型及高丰度蛋白。质谱结果表明,许多低丰度肽后,筛选出较大的蛋白质与LLUF探针检测。多步样品色谱分离检测低丰度唾液肽独立。为临床应用,LLUF探头纳入D可以用LC-MS在未来可能被用来从唾液,以监测疾病的进展。

Protocol

1。创建LLUF探头聚醚砜膜(2厘米2)密封边界桨环氧树脂胶合膜与的三角形聚丙烯桨(美国加州大学圣迭戈分校)。分子量为30 kDa的截止(截留分子量),聚醚砜与带负电荷的膜。 聚四氟乙烯氟化乙烯丙烯管(内径/外径,0.35/0.50厘米)被连接到了一个三角形的聚丙烯桨缸退出,所以LLUF探头,可以连接到20毫升的注射器。 进入人体的唾液浸泡后,在培养皿中(直径50毫…

Discussion

我们已经发现,许多未消化在人类唾液中存在的多肽片段。这些多肽片段是从富含脯氨酸的蛋白,肌动蛋白,α-淀粉酶,α1球蛋白,β球蛋白,histain 1,1角蛋白,粘蛋白7,聚免疫球蛋白受体,satherin,S100A9的各种形式的衍生工具。有可能是未定的切割位点的多肽生产作出贡献的许多因素。例如,一些多肽片段可能是人类唾液中自然存在的。许多与PQ的C-末端肽( 表1和补充表1和2)。富…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作得到了国家卫生资助研究院(以R01-AI067395-01,R21的-R022754-01和R21-I58002-01)。我们感谢尼迈耶C.手稿批判性阅读的。

Materials

Name of the reagent Company Catalog number Comments
Polyethersulfone membranes Pall Corporation   30 kDa MWCO
Teflon fluorinated ethylene propylene tube Upchurch Scientific    
Blue dextran Sigma    
Nano LC system Eksigent    
C18 trap column Agilent 5065-9913  
LTQ linear ion-trap mass spectrometer Thermo Fisher    
Sorcerer 2 Sage-N Research    
Acetonitrile-0.1% formic acid J.T. Baker 9832-03 LC/MS grade
Water-0.1% formic acid J.T. Baker 9834-03 LC/MS grade

Riferimenti

  1. Denny, P. The proteomes of human parotid and ubmandibular/sublingual gland salivas collected as the ductal secretions. J. Proteome Res. 7, 1994-2006 (2008).
  2. Hu, S., Loo, J. A., Wong, D. T. Human saliva proteome analysis. Ann. N.Y. Acad. Sci. 1098, 323-329 (2007).
  3. Ng, D. P., Koh, D., Choo, S. G., Ng, V., Fu, Q. Effect of storage conditions on the extraction of PCR-quality genomic DNA from saliva. Clin. Chim. Acta. 343, 191-194 (2004).
  4. Wade, S. E. An oral-diffusion-sink device for extended sampling of multiple steroid hormones from saliva. Clin. Chem. 38, 1878-1882 (1992).
  5. Hu, S. Large-scale identification of proteins in human salivary proteome by liquid chromatography/mass spectrometry and two-dimensional gel electrophoresis-mass spectrometry. Proteomics. 5, 1714-1728 (2005).
  6. Huang, C. M. Comparative proteomic analysis of human whole saliva. Arch. Oral Biol. 49, 951-962 (2004).
  7. Guerrier, L., Lomas, L., Boschetti, E. A simplified monobuffer multidimensional chromatography for high-throughput proteome fractionation. J Chromatogr. A. 1073, 25-33 (2005).
  8. Huang, C. M., Wang, C. C., Kawai, M., Barnes, S., Elmets, C. A. Surfactant sodium lauryl sulfate enhances skin vaccination: molecular characterization via a novel technique using ultrafiltration capillaries and mass spectrometric proteomics. Mol. Cell Proteomics. 5, 523-532 (2006).
  9. Huang, C. M., Wang, C. C., Kawai, M., Barnes, S., Elmets, C. A. In vivo protein sampling using capillary ultrafiltration semi-permeable hollow fiber and protein identification via mass spectrometry-based proteomics. J. Chromatogr. A. 1109, 144-151 (2006).
  10. Huang, C. M., Wang, C. C., Barnes, S., Elmets, C. A. In vivo detection of secreted proteins from wounded skin using capillary ultrafiltration probes and mass spectrometric proteomics. Proteomics. 6, 5805-5814 (2006).
  11. Huang, C. M. Mass spectrometric proteomics profiles of in vivo tumor secretomes: capillary ultrafiltration sampling of regressive tumor masses. Proteomics. 6, 6107-6116 (2006).
  12. Ahmed, N. An approach to remove albumin for the proteomic analysis of low abundance biomarkers in human serum. Proteomics. 3, 1980-1987 (2006).
  13. Michishige, F. Effect of saliva collection method on the concentration of protein components in saliva. J. Med. Invest. 53, 140-146 (2006).
  14. Kruger, C., Breunig, U., Biskupek-Sigwart, J., Dorr, H. G. Problems with salivary 17-hydroxyprogesterone determinations using the Salivette device. Eur. J. Clin. Chem. Clin. Biochem. 34, 926-929 (1996).
  15. Luque-Garcia, J. L., Neubert, T. A. Sample preparation for serum/plasma profiling and biomarker identification by mass spectrometry. J. Chromatogr. A. 1153, 259-276 (2007).
  16. Ramstrom, M. Depletion of high-abundant proteins in body fluids prior to liquid chromatography fourier transform ion cyclotron resonance mass spectrometry. J. Proteome. Res. 4, 410-416 (2005).
  17. Messana, I. Characterization of the human salivary basic proline-rich protein complex by a proteomic approach. J. Proteome. Res. 3, 792-800 (2004).
  18. Li, T. Possible release of an ArgGlyArgProGln pentapeptide with innate immunity properties from acidic proline-rich proteins by proteolytic activity in commensal streptococcus and actinomyces species. Infect. Immun. 68, 5425-5429 (2000).
  19. Davtyan, T. K., Manukyan, H. A., Mkrtchyan, N. R., Avetisyan, S. A., Galoyan, A. A. Hypothalamic proline-rich polypeptide is a regulator of oxidative burst in human neutrophils and monocytes. Neuroimmunomodulation. 12, 270-284 (2005).
  20. Jonsson, A. P. Gln-Gly cleavage: correlation between collision-induced dissociation and biological degradation. J. Am. Soc. Mass Spectrom. 12, 337-342 (2001).
  21. Gibbons, R. J., Hay, D. I., Schlesinger, D. H. Delineation of a segment of adsorbed salivary acidic proline-rich proteins which promotes adhesion of Streptococcus gordonii to apatitic surfaces. Infect Immun. 59, 2948-2954 (1991).
  22. Li, T., Johansson, I., Hay, D. I., Stromberg, N. Strains of Actinomyces naeslundii and Actinomyces viscosus exhibit structurally variant fimbrial subunit proteins and bind to different peptide motifs in salivary proteins. Infect Immun. 67, 2053-2059 (1999).
  23. Hardt, M. Toward defining the human parotid gland salivary proteome and peptidome: identification and characterization using 2D SDS-PAGE, ultrafiltration, HPLC, and mass spectrometry. Biochimica. 44, 2885-2899 (2005).
  24. Wilmarth, P. A. Two-dimensional liquid chromatography study of the human whole saliva proteome. J. Proteome Res. 3, 1017-1023 (2004).
  25. Saitoh, E., Isemura, S., Sanada, K. Complete amino acid sequence of a basic proline-rich peptide, P-D, from human parotid saliva. J. Biochem. 93, 495-502 (1983).
  26. Slomiany, B. L., Piotrowski, J., Czajkowski, A., Shovlin, F. E., Slomiany, A. Differential expression of salivary mucin bacterial aggregating activity with caries status. Int. J. Biochem. 25, 935-940 (1993).
  27. Juarez, Z. E., Stinson, M. W. An extracellular protease of Streptococcus gordonii hydrolyzes type IV collagen and collagen analogues. Infect Immun. 67, 271-278 (1999).
  28. Lo, C. S., Hughes, C. V. Identification and characterization of a protease from Streptococcus oralis C104. Oral Microbiol. Immunol. 11, 181-187 (1996).
  29. Harrington, D. J., Russell, R. R. Identification and characterisation of two extracellular proteases of Streptococcus mutans. FEMS Microbiol. Lett. 121, 237-241 (1994).
  30. Huang, C. M. In vivo secretome sampling technology for proteomics. Proteomics Clin. Appl. 1, 953-962 (2007).
  31. Skepo, M., Linse, P., Arnebrant, T. Coarse-grained modeling of proline rich protein 1 (PRP-1) in bulk solution and adsorbed to a negatively charged surface. J. Phys. Chem. B. 110, 12141-12148 (2006).
  32. Losic, D., Rosengarten, G., Mitchell, J. G., Voelcker, N. H. Pore architecture of diatom frustules: potential nanostructured membranes for molecular and particle separations. J. Nanosci. Nanotechnol. 6, 982-989 (2006).
  33. Linhares, M. C., Kissinger, P. T. Pharmacokinetic monitoring in subcutaneous tissue using in vivo capillary ultrafiltration probes. Pharm Res. 10, 598-602 (1993).
  34. Li, W., Hendrickson, C. L., Emmett, M. R., Marshall, A. G. Identification of intact proteins in mixtures by alternated capillary liquid chromatography electrospray ionization and LC ESI infrared multiphoton dissociation Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 71, 4397-4402 (1999).
  35. Whitelegge, J. P. Protein-Sequence Polymorphisms and Post-translational Modifications in Proteins from Human Saliva using Top-Down Fourier-transform Ion Cyclotron Resonance Mass Spectrometry. Int. J. Mass Spectrom. 268, 190-197 (2007).
  36. Castro, P., Tovar, J. A., Jaramillo, L. Adhesion of Streptococcus mutans to salivary proteins in caries-free and caries-susceptible individuals. Acta Odontol. Latinoam. 19, 59-66 (2006).
  37. Challacombe, S. J., Sweet, S. P. Oral mucosal immunity and HIV infection: current status. Oral Dis. 8, 55-62 (2002).
  38. Jensen, J. L. Salivary acidic proline-rich proteins in rheumatoid arthritis. Ann. N.Y. Acad. Sci. 842, 209-211 (1998).
check_url/it/4108?article_type=t

Play Video

Citazione di questo articolo
Zhu, W., Gallo, R. L., Huang, C. Sampling Human Indigenous Saliva Peptidome Using a Lollipop-Like Ultrafiltration Probe: Simplify and Enhance Peptide Detection for Clinical Mass Spectrometry. J. Vis. Exp. (66), e4108, doi:10.3791/4108 (2012).

View Video