Summary

利用磁共振成像,容积电脑断层扫描及超音波的裸鼠乳腺癌骨转移大鼠模型血管生成的多模态成像

Published: August 14, 2012
doi:

Summary

在骨转移的发病机制,血管生成是一个关键的过程,因此代表了成像和治疗的目标。在这里,我们提出了一个特定地点的乳腺癌骨转移动物模型和描述战略,以非侵入性影像血管生成<em>在体内</em>使用磁共振成像,容积CT和超声。

Abstract

血管生成是肿瘤生长和转移形成的一个基本特征。在骨转移,血管生成因子在骨髓腔肿瘤和骨细胞,导致局部骨质破坏的互动以及对肿瘤细胞增殖的关键。我们的目标是开发一个模型实验骨转移,可以在体内的血管生成骨骼病变,使用非侵入性的成像技术评估。

为此目的,我们注入腹壁浅动脉,这就排除了1比各自的后腿的其他身体部位的生长转移中的10 5的MDA-MB-231人类乳腺癌细胞。站点特定的骨转移肿瘤细胞接种后25-30天之后,开发,限制股骨远端,近端胫骨和腓骨近端1。新生血管的形态和功能方面,可以在纵向研究骨元stases使用磁共振成像(MRI),体积计算机断层扫描(VCT),超声(美国)。

MRI显示软组织的一部分,最初仅限于骨髓腔和随后而进展超过骨皮质的骨转移的形态学信息。使用动态对比增强磁共振成像(包括区域的血液量,灌注和血管通透性的DCE-MRI)的功能数据,可以得到量化2-4。在高使用形态VCT的成像分辨率骨质破坏被捕获。 MRI检查的补充,溶骨性病变可位于毗邻髓内肿瘤的生长部位。 VCT的血管造影显示造影剂应用后,在高分辨率骨转移macrovessel架构,DCE的VCT使这些病灶微循环,5,6洞察力。美国是适用评估由于骨骼病变的形态和功能特点局部骨皮质溶骨。使用B型和多普勒技术,结构和软组织转移灌注可以评价,分别。 DCE的,我们允许实时成像血管骨转移后注射微泡7。

总之,转移的多模态成像技术,包括MRI,VCT和美国提出补充信息,这些骨骼病变新生血管的形态和功能参数,在特定地点的乳腺癌骨模型。

Protocol

1。细胞培养文化的MDA-MB-231人类乳腺癌细胞在RPMI-1640(美国菌种保藏中心)(Invitrogen公司,德国),10%胎牛血清(Sigma公司,德国)的补充。保留所有文化标准条件下(37℃,湿的气氛,5%CO 2),并通过每周2-3次,以使他们在对数生长期细胞。下文所述的动物模型,有没有必要使用骨特异性肿瘤起飞率是90%以上1 MDA-MB-231细胞株。 收获的分合流后用PBS-2 mM的EDTA的?…

Discussion

诱导实验骨转移结合成像过程中提出的方法,使后续在裸鼠体内的溶骨性病变纵向。在我们的模型中的MDA-MB-231人乳腺癌细胞注射入海,这是一个通过的pudendoepigastric的躯干和股动脉髂总动脉之间的吻合。因此,提供地区到膝关节的血流量维持后结扎海。骨转移模型相比,这种模式的优点是骨转移的特定地点的外观相比腔内注射模型11和列入外渗肿瘤细胞迁移到目标组织的致病过程相比,胫…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作是由德意志研究联合会(SFB-TR 23和SFB – TR 79,结核病和DK)的支持。笔者想感谢雷纳特·班格特,卡琳Leotta和丽莎Seyler的优秀的技术援助。

Materials

Name of the reagent Company Catalogue number
MDA-MB-231 human breast cancer cells American Type Culture Collection (ATCC) HTB-26
RPMI-1640 Invitrogen 61870
FCS Invitrogen 10270
Trypsin-EDTA Invitrogen 25300
Carprofen Rimadyl Pfizer PZN 110208
Magnevist Bayer-Schering PZN 6961516
Imeron 400 MCT Bracco PZN 228654
SonoVue Bracco PZN 1567358
Papaverin Alfa Aesar L 04152
Isofluran Baxter HDG 9623
Symphony (Magnetic resonance imaging) Siemens  
Volume CT (Volumetric computed tomography) Siemens  
Acuson Sequioa 512 (Ultrasound) Siemens-Acuson  

Riferimenti

  1. Bäuerle, T. Characterization of a rat model with site-specific bone metastasis induced by MDA-MB-231 breast cancer cells and its application to the effects of an antibody against bone sialoprotein. Int. J. Cancer. 115, 177-186 (2005).
  2. Merz, M., Komljenovic, D., Zwick, S., Semmler, W., Bäuerle, T. Sorafenib tosylate and paclitaxel induce anti-angiogenic, anti-tumor and anti-resorptive effects in experimental breast cancer bone metastases. Eur. J. Cancer. 47, 277-286 (2010).
  3. Bäuerle, T. Cilengitide inhibits progression of experimental breast cancer bone metastases as imaged noninvasively using VCT, MRI and DCE-MRI in a longitudinal in vivo study. Int. J. Cancer. 128, 2453-2462 (2011).
  4. Bäuerle, T., Merz, M., Komljenovic, D., Zwick, S., Semmler, W. Drug-induced vessel remodeling in bone metastases as assessed by dynamic contrast enhanced magnetic resonance imaging and vessel size imaging: a longitudinal in vivo study. Clin. Cancer Res. 16, 3215-3225 (2010).
  5. Bäuerle, T. Imaging anti-angiogenic treatment response with DCE-VCT, DCE-MRI and DWI in an animal model of breast cancer bone metastasis. Eur. J. Radiol. 73, 280-287 (2010).
  6. Bäuerle, T. Bevacizumab inhibits breast cancer-induced osteolysis, surrounding soft tissue metastasis, and angiogenesis in rats as visualized by VCT and MRI. Neoplasia. 10, 511-520 (2008).
  7. Merz, M., Komljenovic, D., Semmler, W., Bäuerle, T. Quantitative contrast-enhanced ultrasound for imaging anti-angiogenic treatment response in experimental osteolytic breast cancer bone metastases. , (2012).
  8. Brix, G. Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J. Comput. Assist. Tomogr. 15, 621-628 (1991).
  9. Brix, G. Microcirculation and microvasculature in breast tumors: pharmacokinetic analysis of dynamic MR image series. Magn. Reson. Med. 52, 420-429 (2004).
  10. Tofts, P. S. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J. Magn. Reson. Imaging. 10, 223-232 (1999).
  11. Arguello, F., Baggs, R. B., Frantz, C. N. A murine model of experimental metastasis to bone and bone marrow. Cancer Res. 48, 6876-6881 (1988).
  12. Kjonniksen, I., Winderen, M., Bruland, O., Fodstad, O. Validity and usefulness of human tumor models established by intratibial cell inoculation in nude rats. Cancer Res. 54, 1715-1719 (1994).
  13. Bäuerle, T. Treatment of bone metastasis induced by MDA-MB-231 breast cancer cells with an antibody against bone sialoprotein. Int. J. Oncol. 28, 573-583 (2006).
  14. Andersen, T. L. A physical mechanism for coupling bone resorption and formation in adult human bone. Am. J. Pathol. 174, 239-247 (2009).
  15. Nyangoga, H., Mercier, P., Libouban, H., Basle, M. F., Chappard, D. Three-dimensional characterization of the vascular bed in bone metastasis of the rat by microcomputed tomography (MicroCT). PLoS One. 6, e17336 (2011).
  16. Bäuerle, T., Semmler, W. Imaging response to systemic therapy for bone metastases. European Radiol. 19, 2495-2507 (2009).
  17. Bretschi, M. Cilengitide inhibits metastastic bone colonization in a nude rat model. Oncol. Rep. 26, 843-851 (2001).
check_url/it/4178?article_type=t

Play Video

Citazione di questo articolo
Bäuerle, T., Komljenovic, D., Berger, M. R., Semmler, W. Multi-modal Imaging of Angiogenesis in a Nude Rat Model of Breast Cancer Bone Metastasis Using Magnetic Resonance Imaging, Volumetric Computed Tomography and Ultrasound. J. Vis. Exp. (66), e4178, doi:10.3791/4178 (2012).

View Video