Summary

体外评估对离体骨骼肌的收缩,疲劳性和交替“

Published: November 01, 2012
doi:

Summary

我们描述了一种方法来直接测量肌肉力量,肌肉力量,收缩动力学和离体骨骼肌疲劳性的<em在体外</em系统使用领域的刺激。有价值的信息,对Ca<sup> 2 +</sup>处理性和机械的肌肉收缩,可以使用不同的刺激协议获得。

Abstract

这里所描述的方法来衡量的离体骨骼肌的收缩。参数,如肌肉力量,肌肉力量,收缩动力学,耐疲劳性,和恢复疲劳后,可以得到以评估具体方面的兴奋收缩偶联(ECC)的过程中,如兴奋性,收缩机械和Ca 2 +的处理能力。这种方法消除了神经和血液供应,并着重对离体骨骼肌本身。我们经常使用这种方法,虽然调制的Ca 2 +信号转导通路,从而改变骨骼肌的收缩特性,以确定遗传成分。在这里,我们描述了一种新发现的骨骼肌表型, ,机械师交替,作为一个实施例的各种和丰富的方式获得的信息,可以使用在体外肌的收缩力测定。此法单细胞分析,遗传方法和生化组合斯特雷检测到ECC在骨骼肌的机制提供了重要的见解。

Introduction

骨骼肌附加到骨头的骨架和中枢神经系统的控制下,产生收缩力。励磁收缩耦合(ECC)的是指转换的电刺激的机械响应的过程。 Ca 2 +信号是骨骼肌的收缩功能的一个必要组成部分。有效的Ca 2 +动员从肌质网(SR)是一个重要组成部分是用于ECC在肌肉细胞中1,2,和变化,细胞内Ca 2 +信号用在一个数量的肌肉疾病3-5相应的收缩功能障碍的基础。肌肉收缩的正确评估是必要的,免费的Ca 2 +影像和其他实验获得的见解骨骼肌功能,不只是在收缩,而且在动力学水平。力和速度也可以得到通知的重要属性肌肉力量的ECC过程中不同的生理和病理条件下的状态。

这肥沃的研究领域有非常丰富的历史超过两千年6和肌肉的收缩出现的许多理论。现代的肌肉可能在1674年至1682年开始研究用显微镜观察肌纤维的横条纹和肌原纤维中的列文虎克6。将近一个世纪之后,路易伽伐尼指出,青蛙肌肉收缩,大力的神经被触动时,用解剖刀在火花放电从一个遥远的电机7-9。收缩,也可以通过金属导体连接的腿部的肌肉的神经。复杂的电气信号转导机制的细 ​​节所倡导的伽伐尼的最终制定的霍奇金,赫胥黎和Katz在其著名的公式10,11,成为电的基础。显着的观察结果凛蒙古包的影响外Ca 2 +的收缩的青蛙心脏和骨骼肌肉的12-15代表第一个重要步骤识别的Ca 2 +作为一个关键的调节肌肉的收缩16,17。从1980年到现在实现了一阵,发现在肌肉收缩领域,由于引进肌肉的收缩和疲劳的协议,在小鼠的骨骼肌18。琼斯和爱德华兹是第一个表明,低频率间歇性疲劳(有效减少运动引起的)19与变化的ECC机制,而不是收缩装置。的迟到1980年的和1990年代初,Kolkeck [20],Kolbeck提供和Nosek 21,和里德22使用膈肌从啮齿类动物模型,以研究茶碱,cortiosterone,和自由基的影响骨骼肌肉的收缩,而布鲁克斯和Faulkn呃就在快和慢肌的小鼠22的重复力和功率测量的测量报告。此外,Lannegren,Westerblad,羊肉,Westerblad的第一个直接链接与细胞内Ca 2 +调控的离体收缩,并开始质疑23日,24肌肉疲劳性酸中毒的作用。

我们的实验室有显着贡献自2000年初,对了解新基因的调节和调控作用在肌肉ECC重要的角色,在肌肉收缩,易疲劳,和老化,使用完整的小鼠肌肉收缩研究的结合,细胞内的Ca 2 +监控中完整肌肉和皮肤的纤维和分子遗传操作3-5,25-29。

在这里,我们详细介绍了实验协议,用于测量小鼠孤立的比目鱼肌和趾长伸肌收缩(EDL)的肌肉,这对应于一个多缓慢氧化(Ⅰ型和Ⅱa族的肌纤维)和大多快速glyocolytic肌(IIb型和IIx肌纤维)与不同的收缩性能。在这个协议中,完整的肌肉-肌腱配合物的分离和沐浴在ADI PowerLab系统Radnotti室系统,无论是纯的氧或氧的混合物(95%)和CO 2(5%)供给。从基层刺激所产生的电刺激收缩力和力传感器与ADI公司的PowerLab/400系统集成,允许自定义宏例程来控制数据的采集,收集,数字化和存储检测。这种设置可以测量肌肉力量,肌肉力量,以及力与频率的关系,肌肉疲劳,恢复肌肉疲劳,肌肉的收缩速度和整体动力学特性。此外,药物对肌肉收缩的影响,可以通过这些实验中监测。 </p>

这种方法的优点在于从骨骼肌肉去除神经和血管成分,可直接评估肌肉收缩的内在属性。此外, 体外收缩分析允许操纵周围的孤立的肌肉细胞外环境中,这使得能够使用,以定义其生理作用骨骼肌功能的药理操纵各种离子渗透通道和转运。

体外系统,使我们最近发现一个独特的alternan行为在某些突变的肌肉,这与改变细胞内Ca 2 +处理性能 。交替“被定义为波动突发事件的收缩力在下降阶段的疲劳的配置文件。在这些活动中收缩力暂时增加超过以前的水平力D姚小萍Yao Xiaoping疲劳的刺激,也许是因为无论较多的Ca 2 +的释放或收缩机械已成为更为敏感的Ca 2 + 30。环匹阿尼酸(CPA),肌浆内质网钙ATP酶(SERCA),咖啡因,激动剂的ryanodine通道(RyR的)的可逆阻断剂的治疗,和反复疲劳刺激都可以诱导机械交替4,表明交替有直接关系的EC耦合过程的调节。示范的方法,机械交替在设置在体外收缩,诱发并记录作为一个例子来展现多元化的实验参数,可以得到系统或类似的,根据个人的研究兴趣。

这种方法可能是肌肉生理学研究的兴趣。类似的设置也可用于从其他孤立的骨骼muscle-tendon/ligament的复合物解剖位置,以及用于单纤维和肌条。

Protocol

解决方案组成: 2.5毫摩尔的Ca 2 + Tyrode溶液:140 mM氯化钠,5mM的氯化钾,10mM的HEPES,2.5毫摩尔的CaCl 2,2mM的MgCl 2和10mM葡萄糖 0毫摩尔的Ca 2 + Tyrode溶液:140 mM氯化钠,5mM的氯化钾,10mM的HEPES,2毫摩尔MgCl 2,0.1mM的乙二醇四乙酸(EGTA),10mM葡萄糖应注意:沐浴液与100%的O 2饱和,如果使用?…

Discussion

测量的收缩力和疲劳骨骼肌功能的总体评价是非常重要的。此法的主要目的是确定在肌肉力量和疲劳性能,在某些病理条件下的变化,如肌肉减少症和肌肉疲劳,肌肉收缩力的药物/试剂测试效果。由于肌肉力量是密切相关的细胞内Ca 2 +释放,细胞外Ca 2 +进入和这两者之间的串扰,我们还可以收集信息,使用这种方法对Ca 2 +信号在骨骼肌中的地位。在这里,我们展示了一个…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作是由美国心脏协会SDG 10SDG2630086赵X,RO1-AR061385马静和GO资助RC2AR05896 Brotto M.

Materials

Name of the reagent Company Catalogue number Comments (optional)
2-APB Tocris 1224 Blocker of a number of Ca2+ entry channels including SOC and TRP etc.
SKF96365 Sigma SKF-96365 Blocker of a number of Ca2+ entry channels including SOC and receptor-mediated Ca2+ entry etc.
BTP-2 Millipore 203890-5MG Relatively specific SOC blocker
CPA Sigma C1530 Reversible SERCA blocker
caffeine Sigma C0750 Fast action RyR agonist
Radnoti Four Unit Tissue Organ Bath System Radnoti 159920
Combination Tissue Support/Stimulating Electrode Radnoti 160151 Vertical Zig Zag Type with tissue support
Quad Bridge Amp ADInstruments FE224
PowerLab/400 ADInstruments This product is no longer available. Choose other version of the data acquisition system.
Force Transducers (5 mg – 25 g) ADInstruments MLT0201/RAD
Chart v4.02 ADInstruments LabChart 7.3 is the latest version of Chart software.
S8800 Dual Pulse Digital Stimulator GRASS TECHNOLOGIES This product is no longer available. S88X Dual Output Square Pulse Stimulator is a newer stimulator.
RF Transformer Isolation Unit GRASS TECHNOLOGIES Model SIU5

Riferimenti

  1. Winegrad, S. Role of intracellular calcium movements in excitation-contraction coupling in skeletal muscle. Fed. 24, 1146-1152 (1965).
  2. Sandow, A. Excitation-contraction coupling in skeletal muscle. Pharmacol. Rev. 17, 265-320 (1965).
  3. Thornton, A. M. Store-operated Ca(2+) entry (SOCE) contributes to normal skeletal muscle contractility in young but not in aged skeletal muscle. Aging. 3, 621-634 (2011).
  4. Zhao, X. Ca2+ overload and sarcoplasmic reticulum instability in tric-a null skeletal muscle. J. Biol. Chem. 285, 37370-37376 (2010).
  5. Brotto, M. A. Defective maintenance of intracellular Ca2+ homeostasis is linked to increased muscle fatigability in the MG29 null mice. Cell Res. 14, 373-378 (2004).
  6. Florkin, M. Machina carnis. The Biochemistry of Muscular Contraction in its Historical Development. Med. Hist. 17, 316-317 (1973).
  7. Galvani, A., Aldini, J. De viribus electricitatis in motu musculari commentarius. ApudSocietatem Typographicam. , (1792).
  8. Fulton, J. F., Fulton, J. F., Wilson, L. G. . Selected Reading in the History of Physiology. , (1930).
  9. Piccolino, M. Luigi Galvani and animal electricity: two centuries after the foundation of electrophysiology. Trends Neurosci. 20, 443-448 (1997).
  10. Hodgkin, A. L. The Croonian Lecture: Ionic Movements and Electrical Activity in Giant Nerve Fibres. Proceedings of the Royal Society of London. Series B, Biological Sciences. 148, 1-37 (1958).
  11. Hodgkin, A. L. . The Sherrington Lectures VII the Conduction of the Nervous Impulse. , 71964 (1965).
  12. Ringer, S. A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart. J. Physiol. 4, 29-42.3 .
  13. Ringer, S. Further experiments regarding the influence of small quantities of lime, and other salts on muscular tissue. J. Physiol. 7, 291-308 .
  14. Ringer, S., Buxton, D. W. Concerning the action of calcium, potassium and sodium salts upon the eel’s heart and upon the skeletal muscles of the frog. J. Physiol. 8, 15-19 .
  15. Ringer, S. Regarding the action of lime, potassium and sodium salts on skeletal muscle. J. Physiol. 8, 20-24 (1887).
  16. Campbell, A. K. . Intracellular Calcium its Universal Role as Regulator. , (1983).
  17. Mol, J. . Cell Cardiol. 16, ll3-ll6 (1984).
  18. Ridings, J. W., Barry, S. R., Faulkner, J. A. Aminophylline enhances contractility of frog skeletal muscle: an effect dependent on extracellular calcium. J. Appl. Physiol. 67, 671-676 (1989).
  19. Fitts, R. H. The cross-bridge cycle and skeletal muscle fatigue. J. Appl. Physiol. 104, 551-558 (2008).
  20. Kolbeck, R. C., Speir, W. A. Diaphragm contactility as related to cellular calcium metabolism: Influence of theophylline and fatigue. American Review of Respiratory Disease. 139, 495 (1989).
  21. Kolbeck, R. C., Nosek, T. M. Fatigue of rapid and slow onset in isolated perfused rat and mouse diaphragms. J. Appl. Physiol. 77, 1991-1998 (1994).
  22. Moore, B. J. Diaphragm atrophy and weakness in cortisone-treated rats. J. Appl. Physiol. 67, 2420-2426 (1989).
  23. Lannergren, J., Westerblad, H. Force decline due to fatigue and intracellular acidification in isolated fibres from mouse skeletal muscle. J. Physiol. 434, 307-322 (1991).
  24. Westerblad, H. Spatial gradients of intracellular calcium in skeletal muscle during fatigue. Pflugers Arch. 415, 734-740 (1990).
  25. Zhao, X. Enhanced resistance to fatigue and altered calcium handling properties of sarcalumenin knockout mice. Physiol. Genomics. 23, 72-78 (2005).
  26. Wang, X. Cardioprotection of ischemia/reperfusion injury by cholesterol-dependent MG53-mediated membrane repair. Circ. Res. 107, 76-83 (2010).
  27. Cai, C. MG53 nucleates assembly of cell membrane repair machinery. Nat. Cell Biol. 11, 56-64 (2009).
  28. Shen, J. Deficiency of MIP/MTMR14 phosphatase induces a muscle disorder by disrupting Ca(2+) homeostasis. Nat. Cell Biol. 11, 769-776 (2009).
  29. Romero-Suarez, S. Muscle-specific inositide phosphatase (MIP/MTMR14) is reduced with age and its loss accelerates skeletal muscle aging process by altering calcium homeostasis. Aging (Albany NY). 2, 504-513 (2010).
  30. Yazawa, M. TRIC channels are essential for Ca2+ handling in intracellular stores. Nature. 448, 78-82 (2007).
  31. Brotto, M. A., Nosek, T. M., Kolbeck, R. C. Influence of ageing on the fatigability of isolated mouse skeletal muscles from mature and aged mice. Exp. Physiol. 87, 77-82 (2002).
  32. Zhao, X. Compromised store-operated Ca2+ entry in aged skeletal muscle. Aging Cell. 7, 561-568 (2008).
  33. Pan, Z. Dysfunction of store-operated calcium channel in muscle cells lacking mg29. Nat. Cell Biol. 4, 379-383 (2002).
  34. Zhao, X. Azumolene inhibits a component of store-operated calcium entry coupled to the skeletal muscle ryanodine receptor. J. Biol. Chem. 281, 33477-33486 (2006).
  35. Renaud, J. M. Modulation of force development by Na+, K+, Na+ K+ pump and KATP channel during muscular activity. Can. J. Appl. Physiol. 27, 296-315 (2002).
  36. Brotto, M. A. Functional and biochemical modifications in skeletal muscles from malarial mice. Exp. Physiol. 90, 417-425 (2005).
  37. Brotto, M. A. Hypoxia and fatigue-induced modification of function and proteins in intact and skinned murine diaphragm muscle. Pflugers Arch. 440, 727-734 (2000).
  38. Smith, M. A., Reid, M. B. Redox modulation of contractile function in respiratory and limb skeletal muscle. Respir Physiol Neurobiol. 151, 229-241 (2006).
  39. Bagni, M. A., Cecchi, G., Colomo, F. Myofilament spacing and force generation in intact frog muscle fibres. J. Physiol. 430, 61-75 (1990).
check_url/it/4198?article_type=t

Play Video

Citazione di questo articolo
Park, K. H., Brotto, L., Lehoang, O., Brotto, M., Ma, J., Zhao, X. Ex Vivo Assessment of Contractility, Fatigability and Alternans in Isolated Skeletal Muscles. J. Vis. Exp. (69), e4198, doi:10.3791/4198 (2012).

View Video