Summary

एकीकृत Photoacoustic Ophthalmoscopy और वर्णक्रमीय डोमेन ऑप्टिकल जुटना टोमोग्राफी

Published: January 15, 2013
doi:

Summary

Photoacoustic (PAOM) नेत्र विज्ञान, एक ऑप्टिकल अवशोषण आधारित इमेजिंग साधन है, वर्तमान में उपलब्ध नेत्र इमेजिंग तकनीकों के लिए रेटिना के पूरक मूल्यांकन प्रदान करता है. हम एक साथ चूहों में बहुविध रेटिना इमेजिंग के लिए वर्णक्रमीय डोमेन ऑप्टिकल जुटना tomography (एसडी – अक्टूबर) के साथ एकीकृत PAOM का उपयोग कर रिपोर्ट.

Abstract

Both the clinical diagnosis and fundamental investigation of major ocular diseases greatly benefit from various non-invasive ophthalmic imaging technologies. Existing retinal imaging modalities, such as fundus photography1, confocal scanning laser ophthalmoscopy (cSLO)2, and optical coherence tomography (OCT)3, have significant contributions in monitoring disease onsets and progressions, and developing new therapeutic strategies. However, they predominantly rely on the back-reflected photons from the retina. As a consequence, the optical absorption properties of the retina, which are usually strongly associated with retinal pathophysiology status, are inaccessible by the traditional imaging technologies.

Photoacoustic ophthalmoscopy (PAOM) is an emerging retinal imaging modality that permits the detection of the optical absorption contrasts in the eye with a high sensitivity4-7 . In PAOM nanosecond laser pulses are delivered through the pupil and scanned across the posterior eye to induce photoacoustic (PA) signals, which are detected by an unfocused ultrasonic transducer attached to the eyelid. Because of the strong optical absorption of hemoglobin and melanin, PAOM is capable of non-invasively imaging the retinal and choroidal vasculatures, and the retinal pigment epithelium (RPE) melanin at high contrasts 6,7. More importantly, based on the well-developed spectroscopic photoacoustic imaging5,8 , PAOM has the potential to map the hemoglobin oxygen saturation in retinal vessels, which can be critical in studying the physiology and pathology of several blinding diseases 9 such as diabetic retinopathy and neovascular age-related macular degeneration.

Moreover, being the only existing optical-absorption-based ophthalmic imaging modality, PAOM can be integrated with well-established clinical ophthalmic imaging techniques to achieve more comprehensive anatomic and functional evaluations of the eye based on multiple optical contrasts6,10 . In this work, we integrate PAOM and spectral-domain OCT (SD-OCT) for simultaneously in vivo retinal imaging of rat, where both optical absorption and scattering properties of the retina are revealed. The system configuration, system alignment and imaging acquisition are presented.

Protocol

1. System Configuration PAOM सबसिस्टम रोशनी स्रोत: एन डी: YAG लेजर (स्पॉट 10-100, Elforlight लिमिटेड, ब्रिटेन: 20 μJ / नाड़ी, 2 nsec स्पंद अवधि, 30 kHz अधिकतम नाड़ी पुनरावृत्ति दर). 1064 एनएम पर उत्पादन लेजर एक बीटा बेरियम borate 532 एनएम आवृत?…

Representative Results

चित्रा 2 2-D SD अक्टूबर और PAOM एक सूरजमुखी मनुष्य (ए और बी) चूहा और एक pigmented (सी और डी) चूहे, क्रमशः में एक साथ अधिग्रहण के बुध्न छवियों से पता चलता है. एसडी अक्टूबर बुध्न छवियों (आंकड़े 2A और 2C),</st…

Discussion

यहाँ, हम चूहे एसडी अक्टूबर के साथ संयुक्त PAOM का उपयोग आँखों के रेटिना इमेजिंग vivo में एक साथ पर एक विस्तृत निर्देश उपस्थित थे. एसडी अक्तूबर ऑप्टिकल बिखरने आधारित है, शायद, नैदानिक ​​रेटिना इमेजिंग 3</su…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

हम राष्ट्रीय विज्ञान फाउंडेशन (कैरियर – 1,055,379 CBET) और स्वास्थ्य के राष्ट्रीय संस्थान (1R01EY019951 1RC4EY021357) से उदार सहायता धन्यवाद. हम भी चीन छात्रवृत्ति परिषद से वी गीत समर्थन को स्वीकार करते हैं.

Riferimenti

  1. Kinyoun, J. L., Martin, D. C., Fujimoto, W. Y., Leonetti, D. L. Ophthalmoscopy versus fundus photographs for detecting and grading diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 33 (6), 1888-1893 (1992).
  2. Schuman, J. S., Wollstein, G., Farra, T., Hertzmark, E., Aydin, A., Fujimoto, J. G., Paunescu, L. A. Comparison of optic nerve head measurements obtained by optical coherence tomography and confocal scanning laser ophthalmoscopy. Am. J. Ophthalmol. 135 (4), 504-512 (2003).
  3. Strøm, C., Sander, B., Larsen, N., Larsen, M., Lund-Andersen, H. Diabetic macular edema assessed with optical coherence tomography and stereo fundus photography. Invest. Ophthalmol. Vis. Sci. 43 (1), 241-245 (2002).
  4. Hu, S., Maslov, K., Wang, L. V. Three-dimensional Optical-resolution Photoacoustic Microscopy. J. Vis. Exp. (51), e2729 (2011).
  5. Wang, L. V. Multiscale photoacoustic microscopy and computed tomography. Nat. Photonics. 3 (9), 503-509 (2009).
  6. Jiao, S., Jiang, M., Hu, J., Fawzi, A., Zhou, Q., Shung, K. K., Puliafito, C. A., Zhang, H. F. Photoacoustic ophthalmoscopy for in vivo retinal imaging. Opt. Express. 18 (4), 3967-3972 (2010).
  7. Wei, Q., Liu, T., Jiao, S., Zhang, H. F. Image chorioretinal vasculature in albino rats using photoacoustic ophthalmoscopy. J. Mod. Optic. 58 (21), 1997-2001 (2011).
  8. Liu, T., Wei, Q., Wang, J., Jiao, S., Zhang, H.F Combined photoacoustic microscopy and optical coherence tomography can measure metabolic rate of oxygen. Biomed. Opt. Express. 2 (5), 1359-1365 (2011).
  9. Yu, D., Cringle, S. J. Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease. Prog. Retin. Eye Res. 20 (2), 175-208 (2001).
  10. Song, W., Wei, Q., Liu, T., Kuai, D., Burke, J. M., Jiao, S., Zhang, H. F. Integrating photoacoustic ophthalmoscopy with scanning laser ophthalmoscopy, optical coherence tomography, and fluorescein angiography for a multimodal retinal imaging platform. J. Biomed. Opt. 17 (6), 061206 (2012).
  11. Mark, E. . Brezinski Optical Coherence Tomography: Principles and Applications. , (2006).
  12. Hu, S., Rao, B., Maslov, K., Wang, L. V. Label-free photoacoustic ophthalmic angiography. Opt. Lett. 35 (1), 1-3 (2010).
  13. Zhang, H. F., Maslov, K., Wang, L. V. In vivo imaging of subcutaneous structures using functional photoacoustic microscopy. Nature protocols. 2, 797-804 (2007).
  14. Ling, T., Chen, S. L., Guo, L. J. High-sensitivity and wide-directivity ultrasound detection using high Q polymer microring resonators. Appl. Phys. Lett. 98 (20), 204103 (2011).
  15. Xie, Z., Jiao, S., Zhang, H. F., Puliafito, C. A. Laser-scanning optical-resolution photoacoustic microscopy. Opt. Lett. 34, 1771-1773 (2009).
check_url/it/4390?article_type=t

Play Video

Citazione di questo articolo
Song, W., Wei, Q., Jiao, S., Zhang, H. F. Integrated Photoacoustic Ophthalmoscopy and Spectral-domain Optical Coherence Tomography. J. Vis. Exp. (71), e4390, doi:10.3791/4390 (2013).

View Video