Summary

Селективный захват 5-hydroxymethylcytosine из геномной ДНК

Published: October 05, 2012
doi:

Summary

Описывается два шага маркировки процесса с использованием β-glucosyltransferase (β-GT), чтобы передать азид-глюкозы до 5-HMC, а затем нажмите химия для передачи биотин компоновщика для легкой и плотности независимых обогащения. Это эффективный и конкретный маркировки метод позволяет обогащению 5-HMC с крайне низким фоном и высокой пропускной эпигеномном отображения с помощью следующего поколения секвенирования.

Abstract

5-метилцитозин (5-MC) составляет ~ 2-8% от общего цитозина в геномной ДНК человека и влияет на широкий спектр биологических функций, включая экспрессию генов, поддержание целостности генома, родительского импринтинга, инактивации Х-хромосомы, регуляция развития, старения и рака 1. В последнее время в присутствии окисленного 5-тС, 5-hydroxymethylcytosine (5-HMC), был обнаружен в клетках млекопитающих, в частности, в эмбриональных стволовых (ЭС) клеток и нервных клеток 2-4. 5-HMC образуется при окислении 5-тС катализируемой ТЕТ семьи железа (II) / α-КГ-зависимых диоксигеназ 2, 3. 5-HMC предлагается принять участие в поддержании эмбриональных стволовых клеток (ЭСК) клетки, нормального кроветворения и злокачественных новообразований, а также развития зиготы 2, 5-10. Чтобы лучше понять функции 5-HMC, надежный и простой последовательности системы имеет важное значение. Традиционная последовательность бисульфита не могут отличить 5-HMC из 5-тС 11 </sup>. Чтобы распутать биологии 5-HMC, мы разработали высокоэффективные и селективные химические подход к маркировке и захват 5-HMC, пользуясь бактериофага фермент, который добавляет глюкозу группы к 5-HMC конкретно 12.

Здесь мы опишем простой двухэтапной процедуры для селективного маркировки химической 5-HMC. На первом этапе маркировки, 5-HMC в геномной ДНК помечена с 6-азид-глюкозы, катализируемой β-GT, glucosyltransferase из бактериофага Т4, таким образом, что переводит 6-азид-глюкозы до 5-HMC из Изменения кофактора, UDP-6-N3-Glc (6-N3UDPG). На втором этапе, биотинилирование, линкер дисульфида биотин прикреплен к азид группу, нажав на кнопку химии. Оба шага весьма конкретные и эффективные, ведущие к полному маркировке независимо от обилия 5-HMC в геномных регионов и дает крайне низкий фон. После биотинилирования 5-HMC, 5-HMC-содержащих фрагменты ДНК затем выборочно захваченныеиспользованием стрептавидина бусы в плотности независимым образом. Полученный 5-HMC-обогащенного фрагменты ДНК могут быть использованы для последующего анализа, в том числе следующего поколения секвенирования.

Наш избирательный маркировки и захват протокол дает высокую чувствительность, применимы к любому источнику геномной ДНК с переменным / разнообразна 5-HMC содержания. Хотя основной целью этого протокола является его вниз по течению приложений (например,. Следующего поколения секвенирования, чтобы наметить 5-HMC распределение в геноме), она совместима с одной молекулой, в режиме реального времени SMRT (ДНК) последовательность, которая является способные доставлять одной базе резолюции последовательности 5-HMC.

Protocol

1. Геномной ДНК фрагментации Фрагмент геномной ДНК с использованием ультразвука до нужного размера диапазона подходит для генома последовательности платформы. (Мы обычно разрушать ультразвуком до ~ 300 б.п.). Убедитесь, распределение по размерам фрагментированной геномно?…

Discussion

5-hydroxymethylcytosine (5-HMC) является недавно идентифицированных эпигенетической модификацией настоящего в значительных количествах в определенных типах клеток млекопитающих. Метод, представленный здесь для определения генома распределение 5-HMC. Мы используем бактериофага Т4 β-glucosyltransferase пере?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Это исследование было частично поддержана Национальным институтом здоровья (GM071440 в CH и NS051630/MH076090/MH078972 к PJ).

Materials

Name Company Catalog # Comment
Reagents
5M Sodium chloride (NaCl) Promega V4221
0.5M pH8.0 Ethylenediaminetetraacetic acid (EDTA) Promega V4231
1M Trizma base (Tris) pH7.5 Invitrogen 15567-027)
HEPES 1M, pH7.4 Invitrogen 15630
Magnesium chloride (MgCl2) 1M Ambion AM9530G
Dimethyl sulfoxide (DMSO) Sigma D8418
Tween 20 Fisher BioReagents BP337-100
DBCO-S-S-PEG3-Biotin conjugate Click Chemistry Tools A112P3
1,4-Dithiothreitol, ultrapure (DTT) Superpure Invitrogen 15508-013
QIAquick Nucleotide Removal Kit Qiagen 28304
Micro Bio-Spin 6 Column Bio-Rad 732-6222
Dynabeads MyOne Invitrogen 650-01
Streptavidin C1
Qiagen MinElute PCR Purification Kit Qiagen 28004
UltraPure Agarose Invitrogen 16500500
UDP-6-N3-glucose Active Motif 55013
Enzyme
β-glucosyltransferase (β-GT) New England Biolab M0357
Equipment
Sonication device Covaris
Desktop centrifuge
Water bath Fisher Scientific
Gel running apparatus Bio-Rad
NanoDrop1000 Thermo Scientific
Labquake Tube Shaker Barnstead
Labquake Tube Shaker Thermolyne
Magnetic Separation Stand Promega Z5342
Qubit 2.0 Fluorometer Invitrogen
Reagent setup 10 X β-GT Reaction Buffer (500 mM HEPES pH 7.9, 250 mM MgCl2) 2 X Binding and washing (B&W) buffer (10 mM Tris pH 7.5, 1 mM EDTA, 2 M NaCl, 0.02% Tween 20).

Riferimenti

  1. Jaenisch, R., Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. , 245-254 (2003).
  2. Ito, S. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature. 466, 1129-1133 (2010).
  3. Tahiliani, M. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 324, 930-935 (2009).
  4. Kriaucionis, S., Heintz, N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science. 324, 929-930 (2009).
  5. Ko, M. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature. 468, 839-843 (2010).
  6. Koh, K. P. Tet1 and tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell. 8, 200-213 (2011).
  7. Iqbal, K., Jin, S. G., Pfeifer, G. P., Szabo, P. E. Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proceedings of the National Academy of Sciences of the United States of America. 108, 3642-3647 (2011).
  8. Wossidlo, M. 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat. Commun. 2, 241 (2011).
  9. Gu, T. P. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature. 477, 606-610 (2011).
  10. Dawlaty, M. M. Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development. Cell Stem Cell. 9, 166-175 (2011).
  11. Huang, Y. The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PLoS One. 5, e8888 (2010).
  12. Song, C. X. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat. Biotechnol. 29, 68-72 (2011).
  13. Pastor, W. A. Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature. 473, 394-397 (2011).
  14. Matarese, F., Pau, C. a. r. r. i. l. l. o. -. d. e. S. a. n. t. a., E, ., Stunnenberg, H. G. 5-Hydroxymethylcytosine: a new kid on the epigenetic block. Mol. Syst. Biol. 7, 562 (2011).
  15. Szwagierczak, A., Bultmann, S., Schmidt, C. S., Spada, F., Leonhardt, H. Sensitive enzymatic quantification of 5-hydroxymethylcytosine in genomic DNA. Nucleic Acids Res. 38, 181 (2010).
  16. Terragni, J., Bitinaite, J., Zheng, Y., Pradhan, S. Biochemical characterization of recombinant β-glucosyltransferase and analysis of global 5-hydroxymethylcytosine in unique genomes. Biochimica. , (2012).
  17. Rusmintratip, V., Sowers, L. C. An unexpectedly high excision capacity for mispaired 5-hydroxymethyluracil in human cell extracts. Proc. Natl. Acad. Sci. U.S.A. 97, 14183-14187 (2000).
  18. Globisch, D. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One. 5, e15367 (2010).
  19. Yildirim, O. Mbd3/NURD Complex Regulates Expression of 5-Hydroxymethylcytosine Marked Genes in Embryonic Stem Cells. Cell. 147, 1498-1510 (2011).
  20. Szulwach, K. E. Integrating 5-hydroxymethylcytosine into the epigenomic landscape of human embryonic stem cells. PLoS Genet. 7, e1002154 (2011).
  21. Szulwach, K. E. 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat. Neurosci. 14, 1607-1616 (2011).

Play Video

Citazione di questo articolo
Li, Y., Song, C., He, C., Jin, P. Selective Capture of 5-hydroxymethylcytosine from Genomic DNA. J. Vis. Exp. (68), e4441, doi:10.3791/4441 (2012).

View Video