Summary

分析小鼠沿着轴突生长的雪旺氏细胞发展

Published: November 21, 2012
doi:

Summary

在这里,我们描述了雪旺氏细胞(SC)迁移试验中,SC的方向发展,延长轴突。

Abstract

周围神经的发展是一个有趣的过程。神经元发出的轴突支配特定的目标,这在人类的神经元胞体距离超过100厘米。在开发过程中的神经元的存活取决于目标源性生长因子,但也支持雪旺氏细胞(SC)的。为此的SC ensheath轴突从突触或神经肌肉接头的神经元的细胞体(或外周神经系统从中央到过渡)的区域。雪旺氏细胞的神经嵴衍生工具,作为前体以及新兴轴突迁移,直到整个轴突覆盖公务员事务局局长。这表明外周神经系统的发展的SC迁移的重要性,并强调研究该过程的必要性。为了分析SC发展,需要设置下到南海,也包括他们的生理底物的迁移,轴突。由于宫内发育<eM>在体内作用时间的推移成像,但是,是不可行的在胎盘脊椎动物,如鼠标家鼠 )。为了规避这一点,我们调整了颈上神经节(SCG)植技术。神经生长因子(NGF)治疗后,SCG外植体,轴突,其次是SC的前体从神经节沿轴突迁移到外围扩展。该系统是来自内源性SC池和他们一起迁移自己的生理轴突增长的同时,SC的美丽。该系统是特别有趣,因为SC的发展沿着轴突可以通过时间的推移成像分析,开放进一步深入了解SC迁移的可能性。

Protocol

1。胶原蛋白凝胶的制备准备一个股票介质,含455微升10倍MEM,112微升7.5% 碳酸氢钠 ,50μL谷氨酰胺和NaOH。的浓度和的NaOH的量取决于对大鼠尾胶原制备(见1.2),最终体积为1,000微升股票介质。 制备鼠尾胶原根据到Ebendal(1)。胶原溶液在4℃下存放不能观察到甲降解的胶原溶液。新一批准备后,估计需要的股票介质(见1.1)NaOH的浓度。使用的pH指示剂的培养基?…

Representative Results

轴突生长促进从SCG外植体处理后,神经生长因子(4)(电影计划,S1 图1计划)。这个过程是很容易可见的任何倒置显微镜可以后跟延时成像(电影S2)。如果科学家是从小鼠胚胎解剖SCG我们强烈建议通过一个简单的抗酪氨酸羟化酶(TH)免疫组化验证的技术。 TH是儿茶酚胺能神经元(在这种情况下,交感神经元)和一个共同的标记也标签轴突( 图2B)。轴突?…

Discussion

外周神经系统的发展,是一个令人兴奋的过程。当开发完成,轴突ensheathed SC的沿其整个长度,可以在人类中,往往是超过百厘米的。为此所需​​的SC的正确数量的必须建立在开发过程中,也有在SC沿着向周边延伸的轴突,以确保完整的轴突覆盖。这成立有髓神经也为unmeylinated的轴突。在这两种情况下,所有的轴突接触公务员事务局局长,取决于他们的支持。为了研究SC发展,需要测定轴突室考虑…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

我们要感谢Urmas Arumae共享的胶原蛋白协议和尤塔Fey和厄休拉·欣茨优秀的技术援助。此外,我们想感谢基督教F.阿克曼,乌尔里克·恩格尔和尼康在德国海德堡大学的医学影像中心和约阿希姆·基尔希请帮助视频shoting的。部分资金通过德意志研究联合会(SFB 592)的工作。

Materials

Name of Reagent/Material Company Catalogue Number Comments
10x MEM Gibco 21430
Sodium Bicarbonate (7.5%) Gibco 25080
Glutamine Gibco 25030
NaOH Merck 109137
NGF Roche 1058231 R&D#556-NG-100
Neurobasal Medium Gibco 21103
B27 Supplement Gibco 17504
antibiotics Gibco 15640
d-PBS Gibco 14040
insect needles FST 26002-20
syringe needle Braun BD # 300013
8 well chamber slide Lab tek 177402

Riferimenti

  1. Ebendal, T., Rush, R. A. . Use of collagen gels to bioassay nerve growth factor activity. IBRO Handh, (1989).
  2. Heermann, S., SchmÃcker, J., Hinz, U., Rickmann, M., Unterbarnscheidt, T., Schwab, M. H., Krieglstein, K. Neuregulin 1 type III/ErbB signaling is crucial for Schwann cell colonization of sympathetic axons. PloS One. 6 (12), e28692 (2011).
  3. Zuo, Y., Lubischer, J. L., Kang, H., Tian, L., Mikesh, M., Marks, A., Scofield, V. L. Fluorescent proteins expressed in mouse transgenic lines mark subsets of glia, neurons, macrophages, and dendritic cells for vital examination. The Journal of Neuroscience. The Official Journal of the Society for Neuroscience. 24 (49), 10999-11009 (2004).
  4. Levi-Montalcini, R., Booker, B. EXCESSIVE GROWTH OF THE SYMPATHETIC GANGLIA EVOKED BY A PROTEIN ISOLATED FROM MOUSE SALIVARY GLANDS. Proceedings of the National Academy of Sciences of the United States of America. 46 (3), 373-384 (1960).
  5. Meintanis, S., Thomaidou, D., Jessen, K. R., Mirsky, R., Matsas, R. The neuron-glia signal beta-neuregulin promotes Schwann cell motility via the MAPK pathway. Glia. 34 (1), 39-51 (2001).
  6. Yamauchi, J., Miyamoto, Y., Chan, J. R., Tanoue, A. ErbB2 directly activates the exchange factor Dock7 to promote Schwann cell migration. The Journal of cell biology. 181 (2), 351-365 (2008).
  7. Anton, E. S., Weskamp, G., Reichardt, L. F., Matthew, W. D. Nerve growth factor and its low-affinity receptor promote Schwann cell migration. Proceedings of the National Academy of Sciences of the United States of America. 91 (7), 2795-2799 (1994).
  8. Mahanthappa, N. K., Anton, E. S., Matthew, W. D. Glial growth factor 2, a soluble neuregulin, directly increases Schwann cell motility and indirectly promotes neurite outgrowth. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 16 (15), 4673-4683 (1996).
  9. Yamauchi, J., Chan, J. R., Shooter, E. M. Neurotrophins regulate Schwann cell migration by activating divergent signaling pathways dependent on Rho GTPases. Proceedings of the National Academy of Sciences of the United States of America. 101 (23), 8774-8779 (2004).
  10. Gumy, L. F., Bampton, E. T. W., Tolkovsky, A. M. Hyperglycaemia inhibits Schwann cell proliferation and migration and restricts regeneration of axons and Schwann cells from adult murine DRG. Molecular and Cellular Neurosciences. 37 (2), 298-311 (2008).
  11. Sakaue-Sawano, A., Kurokawa, H., Morimura, T., Hanyu, A., Hama, H., Osawa, H., Kashiwagi, S. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell. 132 (3), 487-498 (2008).
  12. Park, D., Don, A. S., Massamiri, T., Karwa, A., Warner, B., MacDonald, J., Hemenway, C. Noninvasive imaging of cell death using an Hsp90 ligand. Journal of the American Chemical Society. 133 (9), 2832-2835 (2011).
  13. Shcherbo, D., Souslova, E. A., Goedhart, J., Chepurnykh, T. V., Gaintzeva, A., Shemiakina, I. I., Gadella, T. W. J., Lukyanov, S., Chudakov, D. M. Practical and reliable FRET/FLIM pair of fluorescent proteins. BMC Biotechnology. 9, 24 (2009).
check_url/it/50016?article_type=t

Play Video

Citazione di questo articolo
Heermann, S., Krieglstein, K. Analyzing Murine Schwann Cell Development Along Growing Axons. J. Vis. Exp. (69), e50016, doi:10.3791/50016 (2012).

View Video