Summary

在固体氧化物燃料电池电极表面的探测和测绘

Published: September 20, 2012
doi:

Summary

我们提出了一个独特的平台,表征电极表面的固体氧化物燃料电池(SOFC),允许同时进行多种表征技术(<em例如,在原位</em拉曼光谱仪和扫描探针显微镜以及电化学测量)。从这些分析可以帮助补充信息,迈向一个更深刻的认识,电极反应和降解机制,提供设计合理,更好的材料,固体氧化物燃料电池的见解。

Abstract

固体氧化物型燃料电池(SOFC)具有潜在氢1-7以外的燃料利用的各种各样的最有效和具有成本效益的解决方案。固体氧化物燃料电池的性能和价格的许多化学和能源在转化过程中的能量储存和转换装置一般是有限的,主要是由沿电极表面的电荷和质量转移和跨接口。不幸的是,这些过程的机理的认识仍然不足,这主要是由于在原位条件下描述这些过程的难度。这方面的知识差距是固体氧化物燃料电池商业化的主要障碍。是非常重要的开发工具,用于探测和映射的表面化学相关的电极反应,揭开表面过程的机理和实现新的电极材料,设计合理,更高效的能源存储和转换2。在相对 ​​较少的原位</ em>的表面分析方法,拉曼光谱仪可以进行即使在高温和恶劣的环境中,使其成为理想的表征化学过程相关的SOFC阳极的性能和降解8-12。它也可以被一起使用电化学测量,可能允许直接相关的电化学的操作单元格中的表面化学。正确的原位拉曼光谱测量将是有益的针指向重要的阳极反应机制,因为它的灵敏度相关的物种,包括碳阳极的性能退化的沉积8,10,13,14(“焦化”)和硫中毒11, 15和以何种方式在表面修饰避开这种退化16。目前的工作表明,这种能力的显着进展情况。此外,该系列的扫描探针显微镜(SPM)技术,提供了一个特殊的办法来询问电表面纳米级分辨率。除了 ​​定期收集,原子力显微镜(AFM)和扫描隧道显微镜的表面形貌,其他属性,如局域电子态,离子扩散系数和表面电位也可以进行调查17-22。在这项工作中,连同一种新的测试电极的平台,该平台由镍的网状电极嵌入的氧化钇稳定的氧化锆(YSZ)电解质,使用电化学测量,拉曼光谱,和SPM。燃料的情况下,含H 2 S的电池性能测试和交流阻抗谱的特点,拉曼光谱是用来进一步阐明硫中毒的性质。 原位拉曼光谱监测调查焦化的行为。最后,原子力显微镜(AFM)和静电力显微镜(EFM),被用来进一步可视化纳米尺度上的碳沉积。从这个研究中,我们渴望的SOFC阳极产生一个更全面的了解。

Protocol

1。制作一个YSZ-嵌入式网状阳极电解槽称出两批YSZ​​粉0.2克。 压缩一个批次YSZ粉末在一个圆柱形的不锈钢模具(13毫米直径),用单轴干压在压力为50 MPa,持续30秒。 剪下<1-厘米一块镍网格的YSZ光盘的表面上,并将其放置在模具内。 添加其他0.2克YSZ粉末之上的Ni-模具内的啮合和扁平化的粉末的表面用柱塞式。 单轴按YSZ粉末包之间夹持的Ni网在300兆帕的压力?…

Representative Results

硫中毒分析 图4中所示的是典型的小区用的Ni的H 2和20ppm的H 2 S的情况下的网状电极,IV和IP曲线。显然,甚至只是几个ppm的H 2 S的引入可以毒害的Ni-YSZ阳极,导致相当大的性能退化。 为了更深入理解的Ni-YSZ阳极的中毒行为,交流阻抗谱的细胞里的开路电压(OCV)的条件下进行。 图5中所示的之前和之后被暴露?…

Discussion

硫中毒分析

图5所示的阻抗谱表明,硫中毒的现象,而不是一个影响大部分材料的表面或界面。具体而言,快速中毒的Ni网状电极( 图6),可能会导致从直接暴露的Ni电极的燃料气体和后续的硫吸附,将不会限制气体扩散的情况下,这个过程的速率尽可能厚的多孔Ni / YSZ阳极。强烈地吸附硫镍,YSZ,和燃料之间的三相边界(TPB)处或附近可能会阻止三?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作是由HeteroFoaM中心,由美国能源部科学办公室基础能源科学办公室(BES)奖号码下DE-SC0001061上的能源前沿研究中心。

Materials

Name of Reagent/Material Company Catalog Number Comments
Nickel mesh Alfa Aesar CAS: 7440-02-0  
Ni Foil Alfa Aesar CAS: 7440-02-0  
YSZ powder TOSOH Lot No:S800888B  
Ag paste Heraeus C8710  
Barium oxide Sigma-Aldrich 1304-28-5  
Silver wire Alfa Aesar 7440-22-4  
Acetone VWR 67-64-1  
Ethanol Alfa Aesar 64-17-5  
UHP H2 Airgas   99.999% purity
100 ppm H2S/H2 Airgas   Certified custom mix
n-type Si AFM tip MikroMasch NSC16 10 nm tip radius
Au coated AFM tip MikroMasch CSC11/Au/Cr 20-30 nm tip radius
Raman Spectrometer Renishaw RM1000  
Ar Ion laser ModuLaser StellarPro 150  
He-Ne laser Thorlabs HPL170  
Atomic Force Microscope Veeco Nanoscope IIIA  
Moving Raman Stage Prior Scientific H101RNSW  
Optical Microscope Leica DMLM  
Scanning Electron Microscope LEO 1550  
Tube Furnace Applied Test Systems 2110  
Polisher Allied High Tech Products MetPrep  
6 μm Grinding media Allied High Tech Products 50-50040M  
3 μm Polishing media Allied High Tech Products 90-30020  
1 μm Polishing media Allied High Tech Products 90-30015  
0.1 μm Polishing media Allied High Tech Products 90-32000  
Raman chamber Harrick Scientific HTRC  

Riferimenti

  1. Minh, N. Q. Solid oxide fuel cell technology-features and applications. Solid State Ionics. 174 (1-4), 271 (2004).
  2. Liu, M., Lynch, M. E., Blinn, K., Alamgir, F., Choi, Y. Rational SOFC material design: new advances and tools. Materials today. 14 (11), 534 (2011).
  3. Zhan, Z. L., Barnett, S. A. An octane-fueled solid oxide fuel cell. Science. 308, 844 (2005).
  4. Huang, Y. H., Dass, R. I., Xing, Z. L., Goodenough, J. B. Double perovskites as anode materials for solid oxide fuel cells. Science. 312, 254 (2006).
  5. Yang, L., Wang, S., Blinn, K., Liu, M., Liu, Z., Cheng, Z., Liu, M. Enhanced Sulfur and Coking Tolerance of a Mixed Ion Conductor for SOFCs: BaZr0.1Ce0.7Y0.2-xYbxO3-d. Science. 326, 126 (2009).
  6. Liu, M. F., Choi, Y. M., Yang, L., Blinn, K., Qin, W., Liu, P., Liu, M. L. Direct octane fuel cells: A promising power for transportation. Nano Energy. 1, 448 (2012).
  7. Cheng, Z., Wang, J. -. H., Choi, Y. M., Yang, L., Lin, M. C., Liu, M. From Ni-YSZ to sulfur-tolerant anodes for SOFCs: electrochemical behavior, in situ characterization, modeling, and future perspectives. Energy & Environmental Science. 4 (11), 4380 (2011).
  8. Blinn, K. S., Abernathy, H. W., Li, X., Liu, M. F., Liu, M. Raman spectroscopic monitoring of carbon deposition on hydrocarbon-fed solid oxide fuel cell anodes. Energy & Environmental Science. 5, 7913 (2012).
  9. Abernathy, H. W. . Investigations of Gas/Electrode Interactions in Solid Oxide Fuel Cells Using Vibrational Spectroscopy [dissertation]. , (2008).
  10. Pomfret, M. B., Owrutsky, J. C., Walker, R. A. High-temperature Raman spectroscopy of solid oxide fuel cell materials and processes. Journal of Physical Chemistry B. 110 (35), 17305 (2006).
  11. Cheng, Z., Liu, M. Characterization of sulfur poisoning of Ni-YSZ anodes for solid oxide fuel cells using in situ Raman microspectroscopy. Solid State Ionics. 178 (13-14), 925 (2007).
  12. Li, X., Blinn, K., Fang, Y., Liu, M., Mahmoud, M. A., Cheng, S., Bottomley, L. A., El-Sayed, M., Liu, M. Application of surface enhanced Raman spectroscopy to the study of SOFC electrode surfaces. Physical Chemistry Chemical Physics. 14, 5919 (2012).
  13. Dresselhaus, M. S., Jorio, A., Hofmann, M., Dresselhaus, G., Saito, R. Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy. Nano Letters. 10, 751 (2010).
  14. Su, C., Ran, R., Wang, W., Shao, Z. P. Coke formation and performance of an intermediate-temperature solid oxide fuel cell operating on dimethyl ether fuel. Journal of Power Sources. 196, 1967 (2011).
  15. Cheng, Z., Abernathy, H., Raman Liu, M. Spectroscopy of Nickel Sulfide Ni3S2. Journal of Physical Chemistry C. 111 (49), 17997 (2007).
  16. Yang, L., Choi, Y., Qin, W., Chen, H., Blinn, K., Liu, M., Liu, P., Bai, J., Tyson, T. A., Liu, M. Promotion of water-mediated carbon removal bynanostructured barium oxide/nickel interfaces in solid oxide fuel cells. Nature Communications. 2, 357 (2011).
  17. Kumar, A., Ciucci, F., Morzovska, A., Kalinin, S., Jesse, S. Measuring oxygen reduction/evolution reactions on the nanoscale. Nature Chemistry. 3, 707 (2011).
  18. Kumar, A., Arruda, T. M., Kim, Y., Ivanov, I. N., Jesse, S., Bark, C. W., Bristowe, N. C., Artacho, E., Littlewood, P. B., Eom, C. B., Kalinin, S. V. Probing Surface and Bulk Electrochemical Processes on the LaAlO3-SrTiO3 Interface. ACS Nano. 6 (5), 3841 (2012).
  19. Katsiev, K., Yildiz, B., Balasubramaniam, K., Salvador, P. A. Electron Tunneling Characteristics on La0.7Sr0.3MnO3 Thin-Film Surfaces at High Temperature. Applied Physics Letters. 95 (9), 092106 (2009).
  20. Jesse, S., Kumar, A., Arruda, T. M., Kim, Y., Kalinin, S. V., Ciucci, F. Electrochemical strain microscopy: Probing ionic and electrochemical phenomena in solids at the nanometer level. MRS Bulletin. 37 (7), 651-65 (2012).
  21. Datta, S. S., Strachan, D. R., Mele, E. J., Johnson, A. T. Surface Layers and Layer Charge Distributions in Few-Layer Graphene Films. Nano Letters. 9, 7 (2009).
  22. Coffey, D. C., Ginger, D. S. Time-resolved electrostatic force microscopy of polymer solar cells. Nature Materials. 5 (9), 735 (2006).
  23. Nakamura, M., Yamada, H., Morita, S. . Roadmap of Scanning Probe Microscopy. , (2007).
  24. Girard, P. Electrostatic force microscopy: principles and some applications to semiconductors. Nanotechnology. 12, 485 (2001).
  25. Rasmussen, J. F. B., Hagen, A. The effect of H2S on the performance of Ni-YSZ anodes in solid oxide fuel cells. Journal of Power Sources. 191 (2), 534 (2009).
  26. Zha, S. W., Cheng, Z., Liu, M. L. Sulfur poisoning and regeneration of Ni-based anodes in solid oxide fuel cells. Journal of The Electrochemical Society. 154 (2), B201 (2007).
  27. Liu, M. F., Ding, D., Blinn, K., Li, X., Nie, L., Liu, M. L. Enhanced performance of LSCF cathode through surface modification. International Journal of Hydrogen Energy. 37 (10), 8613 (2012).
  28. Park, H., Li, X., Blinn, K. S., Liu, M., Lai, S., Bottomley, L. A., Liu, M., Park, S. Probing coking resistance from nanoscale: a study of patterned BaO nanorings over nickel surface. , (2012).
check_url/it/50161?article_type=t

Play Video

Citazione di questo articolo
Blinn, K. S., Li, X., Liu, M., Bottomley, L. A., Liu, M. Probing and Mapping Electrode Surfaces in Solid Oxide Fuel Cells. J. Vis. Exp. (67), e50161, doi:10.3791/50161 (2012).

View Video