Summary

गैलरी मोड Polymeric माइक्रो ऑप्टिकल इलेक्ट्रिक फील्ड सेंसर फुसफुसा का विकास

Published: January 29, 2013
doi:

Summary

एक उच्च संवेदनशीलता photonic सूक्ष्म सेंसर बिजली के क्षेत्र का पता लगाने के लिए विकसित किया गया था. सेंसर एक ढांकता हुआ क्षेत्र के ऑप्टिकल मोड कारनामे. बाहरी बिजली क्षेत्र घबड़ा देना अपनी ऑप्टिकल मोड में बदलाव के लिए अग्रणी क्षेत्र आकारिकी में परिवर्तन. विद्युत क्षेत्र शक्ति इन ऑप्टिकल बदलाव की निगरानी के द्वारा मापा जाता है.

Abstract

Optical modes of dielectric micro-cavities have received significant attention in recent years for their potential in a broad range of applications. The optical modes are frequently referred to as “whispering gallery modes” (WGM) or “morphology dependent resonances” (MDR) and exhibit high optical quality factors. Some proposed applications of micro-cavity optical resonators are in spectroscopy1, micro-cavity laser technology2, optical communications3-6 as well as sensor technology. The WGM-based sensor applications include those in biology7, trace gas detection8, and impurity detection in liquids9. Mechanical sensors based on microsphere resonators have also been proposed, including those for force10,11, pressure12, acceleration13 and wall shear stress14. In the present, we demonstrate a WGM-based electric field sensor, which builds on our previous studies15,16. A candidate application of this sensor is in the detection of neuronal action potential.

The electric field sensor is based on polymeric multi-layered dielectric microspheres. The external electric field induces surface and body forces on the spheres (electrostriction effect) leading to elastic deformation. This change in the morphology of the spheres, leads to shifts in the WGM. The electric field-induced WGM shifts are interrogated by exciting the optical modes of the spheres by laser light. Light from a distributed feedback (DFB) laser (nominal wavelength of ~ 1.3 μm) is side-coupled into the microspheres using a tapered section of a single mode optical fiber. The base material of the spheres is polydimethylsiloxane (PDMS). Three microsphere geometries are used: (1) PDMS sphere with a 60:1 volumetric ratio of base-to-curing agent mixture, (2) multi layer sphere with 60:1 PDMS core, in order to increase the dielectric constant of the sphere, a middle layer of 60:1 PDMS that is mixed with varying amounts (2% to 10% by volume) of barium titanate and an outer layer of 60:1 PDMS and (3) solid silica sphere coated with a thin layer of uncured PDMS base. In each type of sensor, laser light from the tapered fiber is coupled into the outermost layer that provides high optical quality factor WGM (Q ~ 106). The microspheres are poled for several hours at electric fields of ~ 1 MV/m to increase their sensitivity to electric field.

Protocol

1. PDMS Microsphere तैयारी (क्षेत्र) Polydimethylsiloxane (PDMS) का आधार है और इलाज के एजेंट 60:1 का एक मात्रा अनुपात के साथ मिलाया जाता है. सिलिका ऑप्टिकल फाइबर का एक कतरा, के बारे में 2 सेमी लंबा, 1 इसके प्लास्टिक cladding के एक ऑप्टिक?…

Representative Results

क्षेत्र के एक ऑप्टिकल मोड (महिला ग्रैंड मास्टर) लेजर प्रकाश से उत्साहित है जब ऑप्टिकल पथ प्रकाश से कूच लंबाई लेजर तरंग दैर्ध्य की एक बहु पूर्णांक है. 3 चित्र में दिखाया व्यवस्था के लिए, ऑप्टिकल पथ ?…

Discussion

क्षेत्रों के शुरू में एक डीसी उच्च वोल्टेज की आपूर्ति करने के लिए इलेक्ट्रोड को जोड़ने के द्वारा poled कर रहे हैं. Poling अवधि के अंत में, इलेक्ट्रोड सुराग डीसी वोल्टेज की आपूर्ति से काट रहे हैं और 4 चित्र</strong…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

इस शोध समन्वित फोटोनिक्स इंजीनियरिंग (छद्मकरण) अनुसंधान परियोजना प्रबंधक के रूप में डॉ. जे स्कॉट Rodgers के साथ कार्यक्रम में केंद्र के तहत अमेरिका के रक्षा एडवांस्ड रिसर्च प्रोजेक्ट्स एजेंसी द्वारा प्रायोजित है. इस रिपोर्ट में दी गई जानकारी जरूरी स्थिति या अमेरिकी सरकार ने और कोई आधिकारिक समर्थन की नीति inferred किया जाना चाहिए प्रतिबिंबित नहीं करता.

Materials

Company Catalogue number Comments (optional)
PDMS Dow Corning Sylgard 184
Silica fiber Fiber Instrument Sales E-37AP15-FIS
Barium Titanate (BaTiO3) nanoparticles Sigma Aldrich 467634-100G
Laser Controller ILX Lightwave LDC-3724B
DFB Laser Agere Agere 2300 1.310 μm central wavelength
Photodiode Thorlabs PDA10CS
A/D Card National Instruments PXI 6115

Riferimenti

  1. von Klitzing, W. Tunable whispering gallery modes for spectroscopy and CQED experiments. New journal of physics. 3, 14.1-14.14 (2001).
  2. Cai, M., Painter, O., Vahala, K. J., Sercel, P. C. Fiber-coupled microsphere laser. Optics letters. 25 (19), 1430-1432 (2000).
  3. Tapalian, H. C., Laine, J. P., Lane, P. A. Thermooptical switches using coated microsphere resonators. IEEE photonics technology letters. 14 (8), 1118-1120 (2002).
  4. Little, B. E., Chu, S. T., Haus, H. A. Microring resonator channel dropping filters. Journal of lightwave technology. 15, 998-1000 (1997).
  5. Offrein, B. J., Germann, R., Horst, F., Salemink, H. W. M., Beyerl, R., Bona, G. L. Resonant coupler-based tunable add-after-drop filter in silicon-oxynitride technology for WDM networks. IEEE journal of selected topics in quantum electronics. 5, 1400-1406 (1999).
  6. Ilchenko, V. S., Volikov, P. S., et al. Strain tunable high-Q optical microsphere resonator. Optics communications. 145, 86-90 (1998).
  7. Arnold, S., Khoshsima, M., Teraoka, I., Holler, S., Vollmer, F. Shift of whispering-gallery modes in microspheres by protein adsorption. Optics. 28 (4), 272-274 (2003).
  8. Rosenberger, A. T., Rezac, J. P. Whispering-gallery mode evanescent-wave microsensor for trace-gas detection. Proceedings of SPIE. 4265, 102-112 (2001).
  9. Ioppolo, T., Das, N., Ötügen, M. V. Whispering gallery modes of microspheres in the presence of a changing surrounding medium: A new ray-tracing analysis and sensor experiment. Journal of applied physics. 107, 103105 (2010).
  10. Ioppolo, T., Ayaz, U. K., Ötügen, M. V. High-resolution force sensor based on morphology dependent optical resonances of polymeric spheres. Journal of applied physics. 105 (1), 013535 (2009).
  11. Ioppolo, T., Kozhevnikov, M., Stepaniuk, V., Ötügen, M. V., Sheverev, V. Micro-optical force sensor concept based on whispering gallery mode resonances. Applied optics. 47 (16), 3009-3014 (2008).
  12. Ioppolo, T., Ötügen, M. V. Pressure tuning of whispering gallery mode resonators. Journal of optical society of America B. 24 (10), 2721-2726 (2007).
  13. Ioppolo, T., Ötügen, M. V. Effect of acceleration on the morphology dependent optical resonances of spherical resonators. Journal of optical society of America B. 28, 225-227 (2011).
  14. Ayaz, U. K., Ioppolo, T., Ötügen, M. V. Wall shear stress sensor based on the optical resonances of dielectric microspheres. Measurement science and technology. 22, 075203 (2011).
  15. Ioppolo, T., Ayaz, U. K., Ötügen, M. V. Tuning of whispering gallery modes of spherical resonators using an external electric field. Optics express. 17 (19), 16465-16479 (2009).
  16. Ioppolo, T., Stubblefield, J., Ötügen, M. V. Electric field-induced deformation of polydimethylsiloxane polymers. Journal of applied physics. 112, 044906 (2012).
  17. Manzo, M., Ioppolo, T., Ayaz, U. K., LaPenna, V., Ötügen, M. V. A photonic wall pressure sensor for fluid mechanics applications. Review of scientific instrumentation. 83, 105003 (2012).

Play Video

Citazione di questo articolo
Ioppolo, T., Ötügen, V., Ayaz, U. Development of Whispering Gallery Mode Polymeric Micro-optical Electric Field Sensors. J. Vis. Exp. (71), e50199, doi:10.3791/50199 (2013).

View Video