Summary

Микрофлюидных основе электротаксис по требованию Количественный анализ<em> Caenorhabditis Элеганс</em> 'Передвижение

Published: May 02, 2013
doi:

Summary

Полуавтоматические микро-электро-жидкостный способ индукции по требованию локомоция<em> Caenorhabditis Элеганс</em> Описан. Этот метод основан на нейрофизиологических явление червей в ответ на мягкий электрические поля ("электротаксис") внутри микроканалов. Микрофлюидных электротаксис служит быстрый, чувствительный, недорогих и масштабируемых технику для выявления факторов, влияющих на здоровье нейронов.

Abstract

The nematode Caenorhabditis elegans is a versatile model organism for biomedical research because of its conservation of disease-related genes and pathways as well as its ease of cultivation. Several C. elegans disease models have been reported, including neurodegenerative disorders such as Parkinson’s disease (PD), which involves the degeneration of dopaminergic (DA) neurons 1. Both transgenes and neurotoxic chemicals have been used to induce DA neurodegeneration and consequent movement defects in worms, allowing for investigations into the basis of neurodegeneration and screens for neuroprotective genes and compounds 2,3.

Screens in lower eukaryotes like C. elegans provide an efficient and economical means to identify compounds and genes affecting neuronal signaling. Conventional screens are typically performed manually and scored by visual inspection; consequently, they are time-consuming and prone to human errors. Additionally, most focus on cellular level analysis while ignoring locomotion, which is an especially important parameter for movement disorders.

We have developed a novel microfluidic screening system (Figure 1) that controls and quantifies C. elegans‘ locomotion using electric field stimuli inside microchannels. We have shown that a Direct Current (DC) field can robustly induce on-demand locomotion towards the cathode (“electrotaxis”) 4. Reversing the field’s polarity causes the worm to quickly reverse its direction as well. We have also shown that defects in dopaminergic and other sensory neurons alter the swimming response 5. Therefore, abnormalities in neuronal signaling can be determined using locomotion as a read-out. The movement response can be accurately quantified using a range of parameters such as swimming speed, body bending frequency and reversal time.

Our work has revealed that the electrotactic response varies with age. Specifically, young adults respond to a lower range of electric fields and move faster compared to larvae 4. These findings led us to design a new microfluidic device to passively sort worms by age and phenotype 6.

We have also tested the response of worms to pulsed DC and Alternating Current (AC) electric fields. Pulsed DC fields of various duty cycles effectively generated electrotaxis in both C. elegans and its cousin C. briggsae 7. In another experiment, symmetrical AC fields with frequencies ranging from 1 Hz to 3 KHz immobilized worms inside the channel 8.

Implementation of the electric field in a microfluidic environment enables rapid and automated execution of the electrotaxis assay. This approach promises to facilitate high-throughput genetic and chemical screens for factors affecting neuronal function and viability.

Protocol

1. Фотолитографии для изготовления Master Mold Купайтесь 3 дюйма кремниевых пластин в ацетоне в течение 30 секунд, а затем метанолом в течение 30 сек. Промыть дН 2 0 воде в течение 5 мин. Сухой поверхности пластины с пушечным ударом N2. Нагрейте пластину на горячей плите при 140 ° С в …

Representative Results

Представитель видео электротаксис дикого типа молодых взрослых нематод и его положение и скорость выхода из программы слежения червь приведены в дополнительном Video 1 и на фиг.3. Программное обеспечение анализа движения сама не распознает направление пол рность пол, а…

Discussion

Воспользовавшись тем, что поведенческий феномен впервые описан Габель и коллег и здания на работу диэлектрофореза манипуляции Чжуан 11,12 и коллеги, наши микрожидкостной основе анализа электротаксис обеспечивает простой, надежный и чувствительный метод для исследования активно?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Авторы хотели бы поблагодарить естественным наукам и инженерным исследованиям Совета Канады, Канада Исследование программы кафедр, Канадский институт исследований в области здравоохранения, и Онтарио министерство исследований и инноваций через их раннего премии Исследователи Программы финансовой поддержки.

Materials

Name of the reagent Company Catalogue number Comments (optional)
Acetone CALEDON Labs 1200-1-30  
Methanol CALEDON Labs 6700-1-30  
Isopropanol CALEDON Labs 8600-1-40  
SU-8 Microchem Corp. Y131273 SU-8 100
SU-8 Developer Microchem Corp. Y020100  
92×16 mm Petri dish Sarstedt 82.1473.001  
Sylgard 184 Silicone Elastomer Kit Dow Corning   Contains elastomer base and curing agent
Function generator Tektronix Inc.   Model AFG3022B
Amplifier Trek Inc.   Model 2210-CE
Syringe pump Harvard Apparatus 70-4506 Model 11 ELITE
Hot plate Fisher Scientific 11675916Q Model HP131725Q

Riferimenti

  1. Kuwahara, T., Koyama, A., et al. Familial Parkinson mutant α-synuclein causes dopamine neuron dysfunction in transgenic Caenorhabditis elegans. J. Biol. Chem. 281 (1), 334-340 (2006).
  2. Kuwahara, T., Koyama, A., et al. A systematic RNAi screen reveals involvement of endocytic pathway in neuronal dysfunction in a-synuclein transgenic. 17 (19), 2997-3009 (2008).
  3. Su, L. J., Auluck, P. K., et al. Compounds from an unbiased chemical screen reverse both ER-to-Golgi trafficking defects and mitochondrial dysfunction in Parkinson’s disease models. Dis. Model Mech. 3 (3-4), 194-208 (2010).
  4. Rezai, P., Siddiqui, A., Selvaganapathy, P. R., Gupta, B. P. Electrotaxis of Caenorhabditis elegans in a microfluidic environment. Lab Chip. 10 (2), 220-226 (2010).
  5. Salam, S., Ansari, A., et al. A microfluidics set up to study neuronal degeneration and identification of neuroprotective compounds in C. elegans. , (2013).
  6. Rezai, P., Salam, S., Selvaganapathy, P. R., Gupta, B. P. Electrical sorting of Caenorhabditis elegans. Lab Chip. 12 (10), 1831-1840 (2012).
  7. Rezai, P., Salam, S., Selvaganapathy, P. R., Gupta, B. P. Effect of pulse direct current signals on electrotactic movement of nematodes Caenorhabditis elegans and Caenorhabditis briggsae. Biomicrofluidics. 5 (4), 044116 (2011).
  8. Rezai, P., Siddiqui, A., Selvaganapathy, P. R., Gupta, B. P. Behavior of Caenorhabditis elegans in alternating electric field and its application to their localization and control. Appl. Phys. Lett. 96 (15), 153702 (2010).
  9. van Ham, T. J., Thijssen, K. L., Breitling, R., Hofstra, R. M., Plasterk, R. H., Nollen, E. A. C. elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging. PLoS Genet. 4, e1000027 (2008).
  10. Brenner, S. The genetics of Caenorhabditis elegans. Genetica. 77 (1), 71-94 (1974).
  11. Gabel, C. V., Gabel, H., Pavlichin, D., Kao, A., Clark, D. A., Samuel, A. D. Neural circuits mediate electrosensory behavior in Caenorhabditis elegans. J. Neurosci. 27 (28), 7586-7596 (2007).
  12. Chuang, H. -. S., Raizen, D. M., Lamb, A., Dabbish, N., Bau, H. H. Dielectrophoresis of Caenorhabditis elegans. Lab Chip. 11 (4), 599-604 (2011).
  13. Cronin, C. J., Mendel, J. E., Mukhtar, S., Kim, Y. -. M., Stirbl, R. C., Bruck, J., Sternberg, P. W. An automated system for measuring parameters of nematode sinusoidal movement. BMC Genet. 6, 5 (2005).
  14. Manière, X., Lebois, F., Matic, I., Ladoux, B., Meglio, J. -. M. D. i., Hersen, P. Running worms: C. elegans self-sorting by electrotaxis. PLoS One. 6 (2), e16637 (2011).
check_url/it/50226?article_type=t

Play Video

Citazione di questo articolo
Tong, J., Rezai, P., Salam, S., Selvaganapathy, P. R., Gupta, B. P. Microfluidic-based Electrotaxis for On-demand Quantitative Analysis of Caenorhabditis elegans‘ Locomotion. J. Vis. Exp. (75), e50226, doi:10.3791/50226 (2013).

View Video