Summary

新工具展开调节性T细胞的HIV-1感染的个体

Published: May 30, 2013
doi:

Summary

CD4+ Regulatory T cells are potent immune-modulators and serve important functions in immune homeostasis. The paucity of these cells in peripheral blood makes functional studies challenging, specifically in the context of HIV-1-infection. We here describe a method to isolate and expand functional CD4+ Tregs from peripheral blood from HIV-1-infected individuals.

Abstract

CD4 +调节性T细胞(Treg细胞)是强有力的免疫调节剂,在人体免疫稳态中发挥重要作用。导致可测量的增加,在癌症和感染病原体的疫苗设置的抗原特异性T细胞应答的调节性T细胞的耗竭。然而,它们的作用在HIV-1免疫发病机制仍存在争议,因为它们既可以起到抑制有害的HIV-1相关的免疫激活,从而减慢HIV-1疾病的进展或者抑制HIV-1的特异性免疫力,从而促进病毒蔓延。理解和调节Treg细胞功能的背景下,HIV-1可能导致免疫治疗或艾滋病毒疫苗的潜在的新战略。然而,重要的开放问题依然存在的背景下,HIV-1的感染,这需要仔细研究自己的角色。

占大约5%的人类CD4 + T细胞在外周血中,研究调节性T细胞的人口已被证明是困难的,第ESpecially在HIV-1感染个体的HIV-1相关的CD4 T细胞和调节性T细胞耗竭与发生。调节性T细胞在个体与先进的HIV-1病或组织样品,其中只有非常小的生物样品可以通过以下方式获得,因此极具挑战性的表征。我们提出了一个技术解决方案来克服这些限制,使用调节性T细胞的分离和扩增HIV-1阳性的个体。

在这里,我们介绍一个简单而可靠的方法,成功地扩大调节性T细胞体外 HIV-1 感染者隔离。流的排序条件CD3 + CD4 + CD25 + CD127 调节性T细胞刺激与anti-CD3/anti-CD28包被的磁珠,并在IL-2存在下培养。扩大调节性T细胞表达高水平的FOXP3,CTLA4 HELIOS相比传统的T细胞被证明是高度抑制。更容易获得大量的调节性T细胞,将使研究人员能够解决我的mportant问题,他们在HIV-1免疫病理的作用。我们认为,回答这些问题可能​​为一个有效的HIV-1疫苗的发展提供有益的启示。

Introduction

拥有超过3400万个人生活与艾滋病毒/艾滋病在世界范围,估计有250万人新感染在2011年,需要一个有效的HIV疫苗,以遏制全球艾滋病疫情仍然是最重要的。然而,尽管深入研究三十年的努力,已导致HIV-1疫苗的有效性试验只有适度保护1-3保护性免疫的相关性仍然知之甚少。阐明保护所需的免疫反应的性质是必不可少的一种有效的HIV-1的针对HIV-1感染的疫苗和免疫治疗策略的策略设计。

天然的CD4 +调节性T细胞(Treg细胞)通过控制过度的免疫激活,从而限制了免疫介导的组织损伤的免疫细胞稳态的维持是至关重要的。然而,他们也可以对病原体的抑制免疫反应,并防止其间隙。巨蟹座和HEPAtitis疫苗的研究表明,调节性T细胞活性的降低可以提高疫苗的反应和抗原特异性的抗病毒4-7。然而,调节性T细胞在HIV-1感染的背景下,确切的影响还不完全清楚。调节性T细胞减少8活化的T细胞和病毒复制的可能影响免疫激活9。他们还抑制HIV-1的特异性免疫反应,这可能会产生负面的结果病情恶化10,11。因此,能够调节的调节性T细胞活性的HIV-1疫苗,以增强疗效之前,重要的是进一步深入了解这种疾病的上下文中它们的功能。

人CD4 +调节性T细胞是一种相对稀缺的细胞群体,占约5%的CD4 + T细胞的外周血中,和他们的绝对数量进一步减少与艾滋病毒相关的CD4 + T细胞耗竭12 </ SUP>。电流检测,以评估调节性T细胞的功能,如T细胞增殖实验与调节性T细胞共培养,使用比较大的手机号码12。因此,表征个人与先进的功能和特异性的调节性T细胞在HIV-1疾病已具有挑战性的,尽管他们的艾滋病毒发病机制中的重要性。

从HIV-1患者调节性T细胞体外分离和扩展,可以代表一个解决方案来克服这些限制。在这里,我们介绍一个简单而强大的协议扩大功能的调节性T细胞的HIV-1 感染体外来自我们进一步解释了表型他们和测试使用流式细胞仪检测其抑制功能。我们相信,这项协议将Tregs的便利和帮助了解自己的角色在HIV-1疾病的进展。

Protocol

1. Regulatory T cell isolation from HIV-1 Positive Blood Carefully transfer blood, collected in ACD tubes, into a 50 ml conical tube for a final volume of 15 ml blood per tube. Add 25 μl/ml of blood of RosetteSep Human CD4+ T Cell Enrichment Cocktail, mix carefully and incubate 20 min at room temperature. Add 15 ml of PBS/2% FBS to the blood and mix carefully. Layer the diluted blood sample on top of 15 ml of Histopaque at room temperature in a 50 ml conical tube. Spin the conical t…

Representative Results

The expression of interleukin 2 receptor (CD25) and the interleukin 7 receptor (CD127) have been described as reliable surface markers to identify functional Treg populations 13 and have been shown to correlate with CD4+CD25+FOXP3+ Tregs 9,12. Figure 1 represents the gating strategy used to flow-sort single CD3+CD4+CD25+CD127low Tregs from PBMC isolated from an HIV-1-positive individual. The CD25/CD127 anti…

Discussion

Using the protocol described above, Tregs can be successfully isolated and expanded from HIV-1-infected individuals in vitro. Expanded Tregs express high levels of FOXP3, CTLA4 and HELIOS, are highly suppressive and display a highly demethylated Treg-Specific Demethylation Region (TSDR) locus of the FOXP3 gene (data not shown) 15, suggesting true origin from the regulatory T cell lineage, as opposed to activation-induced transient FOXP3 upregulation. Deep sequencing demonstrated that the TCR repertoir…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

This work was supported in part by research funding from the Elisabeth Glaser Pediatric AIDS Foundation (Pediatric HIV Vaccine Program Award MV-00-9-900-1429-0-00 to MMA), MGH/ECOR (Physician Scientist Development Award to MMA), NIH NIAID (KO8219 AI074405 and AI074405-03S1 to MMA), and the Harvard University Center for AIDS Research (CFAR), an NIH funded program (P30 AI060354) which is supported by the following NIH Co-Funding and Participating Institutes and Centers: NIAID, NCI, NICHD, NHLBI, NIDA, NIMH, NIA, FIC, and OAR. These studies were furthermore supported by the Bill & Melinda Gates Foundation and the Terry and Susan Ragon Foundation.

Materials

      Reagents
RosetteSep Human CD4+ T Cell Enrichment Cocktail Stemcells technologies 15062  
PBS Sigma D8537  
FBS Sigma F4135  
Histopaque Sigma H8889  
Anti-CD3-PECy7 BD Pharmingen 557851  
Anti-CD4-FITC eBioscience 11-0049-42  
Anti-CD25-APC eBioscience 17-0259-42  
Anti-CD127-PE BD Pharmingen 557938  
Round-Bottom tube with 35 μm a nylon mesh BD Falcon 352235  
X-VIVO 15 Lonza 04-418Q  
Penicillin/Streptomycin Mediatech 30-001-Cl  
Human Serum Gemini Bio-Products 100-512  
Human T-activator CD3/CD28 Life Technologies 111.31D  
IL-2 NIH Aids Research & Reference Reagent Program 136  
LIVE/DEAD Fixable Violet Dead Cell Stain Kit Life technologies L34955  
Anti-CD4-qdot-655 Life Technologies Q10007  
Anti-CD25-PECy5 eBiosciences 15-0259-42  
Foxp3 / Transcription Factor Staining Buffer Set eBiosciences 00-5523-00  
Anti-FOXP3-PE eBiosciences 12-4776-42  
Anti-HELIOS-FITC Biolegend 137204  
Anti-CTLA4-APC BD Pharmingen 555855  
CellTrace Violet Cell Proliferation Kit Life Technologies C34557  
Vybrant CFDA SE Cell Tracer Kit Life Technologies V12883  
HEPES Mediatech 25-060-Cl  
Treg Suppression inspector Miltenyi Biotec 130-092-909  
Anti-CD4-APC BD Pharmingen 340443  
Anti-CD8-AF700 BD Pharmingen 557945  
RPMI 1640 Sigma R0883  
Glutamine Mediatech 25-002-Cl  
      Materials
BD Vacutainer Blood Collection Tube w/ ACID CITRATE DEXTROSE (ACD) Becton, Dickinson and Company (BD) 364606  
FACSAria IIu Cell Sorter BD Biosciences  
LSR II Flow Cytometer BD Biosciences  
FlowJo Tree Star v887  

Riferimenti

  1. Rerks-Ngarm, S., et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N. Engl. J. Med. 361, 2209-2220 (2009).
  2. Buchbinder, S. P., et al. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet. 372 (08), 1881-1893 (2008).
  3. Pitisuttithum, P., et al. Randomized, double-blind, placebo-controlled efficacy trial of a bivalent recombinant glycoprotein 120 HIV-1 vaccine among injection drug users in Bangkok, Thailand. J. Infect. Dis. 194, 1661-1671 (2006).
  4. Morse, M. A., et al. Depletion of human regulatory T cells specifically enhances antigen-specific immune responses to cancer vaccines. Blood. 112, 610-618 (2008).
  5. Furuichi, Y., et al. Depletion of CD25+CD4+T cells (Tregs) enhances the HBV-specific CD8+ T cell response primed by DNA immunization. World J. Gastroenterol. 11, 3772-3777 (2005).
  6. Rech, A. J., Vonderheide, R. H. Clinical use of anti-CD25 antibody daclizumab to enhance immune responses to tumor antigen vaccination by targeting regulatory T cells. Ann. N.Y. Acad. Sci. 1174, 99-106 (2009).
  7. Ruter, J., et al. Altering regulatory T cell function in cancer immunotherapy: a novel means to boost the efficacy of cancer vaccines. Front Biosci. 14, 1761-1770 (2009).
  8. Moreno-Fernandez, M. E., Rueda, C. M., Rusie, L. K., Chougnet, C. A. Regulatory T cells control HIV replication in activated T cells through a cAMP-dependent mechanism. Blood. 117, 5372-5380 (2011).
  9. Schulze Zur Wiesch, J., et al. Comprehensive analysis of frequency and phenotype of T regulatory cells in HIV infection: CD39 expression of FoxP3+ T regulatory cells correlates with progressive disease. J. Virol. 85, 1287-1297 (2011).
  10. Kinter, A., et al. Suppression of HIV-specific T cell activity by lymph node CD25+ regulatory T cells from HIV-infected individuals. Proc. Natl. Acad. Sci. U.S.A. 104, 3390-3395 (2007).
  11. Moreno-Fernandez, M. E., Presicce, P., Chougnet, C. A. Homeostasis and function of regulatory T cells in HIV/SIV infection. J. Virol. , (2012).
  12. Angin, M., et al. Preserved Function of Regulatory T Cells in Chronic HIV-1 Infection Despite Decreased Numbers in Blood and Tissue. J. Infect. Dis. 205, 1495-1500 (2012).
  13. Seddiki, N., et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med. 203, 1693-1700 (2006).
  14. De Jager, P. L., et al. The role of the CD58 locus in multiple sclerosis. Proc. Natl. Acad. Sci. U.S.A. 106, 5264-5269 (2009).
  15. Baron, U., et al. DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3(+) conventional T cells. Eur. J. Immunol. 37, 2378-2389 (2007).
  16. Salomon, B., et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity. 12, 431-440 (2000).
  17. Malek, T. R., Bayer, A. L. Tolerance, not immunity, crucially depends on IL-2. Nat. Rev. Immunol. 4, 665-674 (2004).
  18. Hoffmann, P., Eder, R., Kunz-Schughart, L. A., Andreesen, R., Edinger, M. Large-scale in vitro expansion of polyclonal human CD4(+)CD25high regulatory T cells. Blood. 104, 895-903 (2004).
  19. Putnam, A. L., et al. Expansion of human regulatory T-cells from patients with type 1 diabetes. Diabetes. 58, 652-662 (2009).
  20. Kreijveld, E., Koenen, H. J., Hilbrands, L. B., Joosten, I. Ex vivo expansion of human CD4+ CD25high regulatory T cells from transplant recipients permits functional analysis of small blood samples. J. Immunol. Methods. 314, 103-113 (2006).
  21. Ebinuma, H., et al. Identification and in vitro expansion of functional antigen-specific CD25+ FoxP3+ regulatory T cells in hepatitis C virus infection. J Virol. 82, 5043-5053 (2008).
  22. Strauss, L., Czystowska, M., Szajnik, M., Mandapathil, M., Whiteside, T. L. Differential responses of human regulatory T cells (Treg) and effector T cells to rapamycin. PLoS ONE. 4, e5994 (2009).
  23. Heredia, A., et al. Rapamycin causes down-regulation of CCR5 and accumulation of anti-HIV beta-chemokines: an approach to suppress R5 strains of HIV-1. Proc. Natl. Acad. Sci. U.S.A. 100, 10411-10416 (1073).
  24. Hoffmann, P., et al. Only the CD45RA+ subpopulation of CD4+CD25high T cells gives rise to homogeneous regulatory T-cell lines upon in vitro expansion. Blood. 108, 4260-4267 (2006).
  25. Hoffmann, P., et al. Loss of FOXP3 expression in natural human CD4+CD25+ regulatory T cells upon repetitive in vitro stimulation. Eur. J. Immunol. 39, 1088-1097 (2009).
  26. Wang, J., Ioan-Facsinay, A., vander Voort, E. I., Huizinga, T. W., Toes, R. E. Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur. J. Immunol. 37, 129-138 (2007).
  27. Takahashi, T., et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 192, 303-310 (2000).
  28. Thornton, A. M., et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J. Immunol. 184, 3433-3441 (2010).
  29. Zheng, S. G., Gray, J. D., Ohtsuka, K., Yamagiwa, S., Horwitz, D. A. Generation ex vivo of TGF-beta-producing regulatory T cells from CD4+CD25- precursors. J. Immunol. 169, 4183-4189 (2002).
  30. Gregori, S., Roncarolo, M. G., Bacchetta, R. Methods for in vitro generation of human type 1 regulatory T cells. Methods Mol. Biol. 677, 31-46 (2011).
check_url/it/50244?article_type=t

Play Video

Citazione di questo articolo
Angin, M., King, M., Addo, M. M. New Tools to Expand Regulatory T Cells from HIV-1-infected Individuals. J. Vis. Exp. (75), e50244, doi:10.3791/50244 (2013).

View Video