Summary

使用プラ​​センタアクロス異物およびナノ材料の輸送速度の決定<em> ex vivoで</em>ヒト胎盤灌流モデル

Published: June 18, 2013
doi:

Summary

ザ<em> ex vivoで</em>デュアル再循環ヒト胎盤灌流モデルはヒト胎盤を横切る異物およびナノ粒子の移動を調査するために使用することができる。このビデオプロトコルでは、胎盤の血流を正常に実行するために必要な機器や技術について説明します。

Abstract

十年前にヒト胎盤は母親と胎児の間に不可解な障壁であると考えられた。しかし、サリドマイド誘発性の先天性欠損症や多くのその後の研究の発見は、その後、反対のことを証明した。ニコチンのような今日、いくつかの有害な異物、ヘロイン、メタドンまたは薬物と同様の環境汚染物質は、この障壁を克服するために記載された。ナノテクノロジーの使用が増えていると、胎盤は、誤って露出を介して、または意図的に潜在的なナノ医療アプリケーションの場合における新規ナノ粒子と接触する可能性があります。胎盤は、ほとんどの種特異的な哺乳類の臓器1であるため、動物実験からのデータは、ヒトに外挿することはできません。したがって、Panigel によって開発されたex vivoでのデュアル循環ヒト胎盤灌流、1967 2と連続シュナイダーによって修正された、1972年 3において、優れたモデルTとして機能することができoが生体異物または粒子の移動を検討する。

ここでは、再現性のある結果を取得するために、ヒト胎盤灌流プロトコルおよびさらなる発展を再循環させるex vivoでの二重焦点を当てる。

胎盤は帝王切開を受け合併症長期妊娠から母親のインフォームドコンセント後に得られた。無傷の子葉の胎児と母体の血管が少なくとも5時間カニューレを挿入し、灌流した。モデル粒子として、直径80〜500nmのサイズを有する蛍光標識ポリスチレン粒子は、母体回路に加えた。 80 nmの粒子は胎盤関門を通過し、500 nmの粒子は胎盤組織または母性回路に保持している間、胎児に胎盤を介して転送された物質のための完璧な例を提供することができました。 ex vivoでヒト胎盤灌流モデルは、約信頼できる情報を提供するいくつかのモデルの一つである予測と臨床関連データを提供しています重要な組織関門における生体異物の輸送挙動。

Introduction

胎盤は、酸素、二酸化炭素、栄養素および廃棄物と母と互いに分離成長する胎児の二血液回路を維持することができ、同時に交換を担当する複雑な器官である。さらに、母体の免疫系による子供の拒絶反応を防止し、妊娠を維持するホルモンを分泌する。セルラバリアは4,5横細胞膜なしで真シンシチウムを融合して形成栄養膜細胞によって形成される。全体の胎盤は、一胎児絨毛ツリーが含まれており、胎盤の一つの機能単位を表すいくつかの子葉、で構成されています。

胎盤のバリア機能の研究は、1960年代にサリドマイド誘発さ奇形の発見で激化しました。明白な理由のために妊娠中の女性との転座の調査を行うことができない。したがって、様々な代替モデルは6,7開発されている</s>まで。最も有望な、おそらくほとんどの臨床関連モデルはPanigelや同僚2,3によって開発されたex vivoでヒト胎盤灌流モデルです。

多くの女性は、妊娠8時の薬物や環境汚染など、さまざまな異物にさらされている。既に妊娠中に定期的に投与されたいくつかの薬については、 インビボ試験で臍帯血中のそれと母体血中濃度と比較することによって行うことができる。しかし、一般的に胎児およびこれらの物質の催奇形性における薬物動態と力学に関する限られた情報があります。

例えば、ヘロインのようなアヘンを簡単胎盤関門を通過し、子宮内発育制限、早産や自然流産9,10につながることができます。だから、妊娠中行方不明禁欲の場合メタドンによる補充療法が推奨される。 前のインビボでヒト胎盤灌流モデルは、胎児循環へのメタドンの転送が配達12後算出臍帯血対母体血中濃度比とよく相関ごくわずか11であることが明らかになった。

ナノテクノロジーは、特に医学の成長分野である。だから、自然に細かい発生(直径<2.5μm)で、森林火災、火山噴火の煙でと砂漠の塵に超微粒子(直径<0.1μm)で、工業ナノ材料への暴露(少なくとも一次元<0.1μmの13の下)増加している。これは、工業ナノ材料の毒性可能性について疑問を提起した。全く人間の危険がまだ証明されなかったものの、工業ナノ粒子は毒性結果14につながる有害な生物学的反応を引き起こす可能性があることを示す主な実験的研究があります。最近では、いくつかの研究では、への出生前暴露を示した大気汚染は、新生児と子供15,16が高い呼吸必要性と気道炎症にリンクされています。また、小型のナノ粒子は、特に胎児や妊婦のいずれかを治療するための薬物担体として使用されるかもしれない。そのため、異なる生体異物やナノと胎盤関門を通過する能力を広範囲の研究が必要であることが明らかになります。工業ナノ材料への胎盤透過性に関する現在の研究の実際の概要はメネゼスに要約され、201117 Buerki-Thurnherr らは 2012年7。

ex vivoでデュアル循環ヒト胎盤灌流モデルでは、様々な内因性および外因性化合物3,11,12,18,19の胎盤輸送との責任のメカニズムのような胎盤の他の機能の広い範囲を研究するための制御された信頼性の高いシステムを提供しています子癇前症のような病理学的状態の開発<> 20-22(商標)。このプロトコルでは、蓄積効果や生体異物やナノ粒子の広範なセットの転率の研究を可能に設定し、扱い、そして方法に主に焦点を当てています。

Protocol

1。灌流システムの準備水浴、灌流チャンバー、酸素化のための2つの列が、2蠕動ポンプ、2バブルトラップ、2つの流ヒーターやつの圧力センサ( 図1)で構成される灌流システムをセットアップします。 図2のスキームに従ってシリコーン及びポリ塩化ビニル材料から成るチューブセクションで、これらのコンポーネントを接続します。最後にそれぞれ、胎児?…

Representative Results

図4Aは、胎児のコンパートメントに移管されていない大きなポリスチレン粒子(500nm以下)に比べて胎盤を通過して輸送された小さなポリスチレン粒子(80 nm)での灌流プロファイルを示しています。各データポイントは、少なくとも3つの独立した実験の所定の時点までの平均粒子濃度を表す。ポリスチレンの場合は胎盤転送はサイズ依存19であるナノ粒子。 500 nmのポリ?…

Discussion

デュアル循環灌流下に答えなければならない質問に応じて可能な他のいくつかの実験的な構成がありますが、ここに示しました。特にオープン胎盤灌流は、一般的に定常状態濃度3に薬物クリアランスを評価するために使用される。再循環血流のセットアップはまた、内因性又は外因性物質の能動輸送を確認するために適用することができる。このアプローチのために生体異物の同じ?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

この作品は、財政的にスイス国立財団、(NRP 64プログラム、全く4064から131232を付与しない)によってサポートされています。

Materials

Name of the Reagent Company Catalogue Number Comments (optional)
NCTC-135 medium ICN Biomedicals, Inc. 10-911-22C could be replaced by Medium 199 from Sigma (M3769)
Sodium chloride (NaCl) Sigma-Aldrich, Fluka 71381
Potassium chloride (KCl) Hospital pharmacy also possible: Sigma (P9541)
Monosodium phosphate (NaH2PO4 · H2O) Merck 106346
Magnesium sulfate (MgSO4 · H2O) Sigma-Aldrich, Fluka 63139
Calcium chloride (CaCl, anhydrous) Merck 102388
D(+) Glucose (anhydrous) Sigma-Aldrich, Fluka 49138
Sodium bicarbonate (NaHCO3) Merck 106329
Dextran from Leuconostoc spp. Sigma-Aldrich 31389
Bovine serum albumin (BSA) Applichem A1391
Amoxicilline (Clamoxyl) GlaxoSmithKline AG 2021101A
Sodium heparin B. Braun Medical AG 3511014
Sodium hydoxide (NaOH) pellets Merck 106498 CAUTION: corrosive
Ortho-phosphoric acid 85% (H3PO4) Merck 100573 CAUTION: corrosive
Maternal gas mixture: 95% synthetic air, 5% CO2 PanGas AG
Fetal gas mixture: 95% N2, 5% CO2 PanGas AG
Antipyrine (N-methyl-14C) American Radiolabeled Chemicals, Inc. ARC 0108-50 μCi CAUTION: radioactive material (specific activity: 55mCi/mmol)
Scintillation cocktail (IrgaSafe Plus) Zinsser Analytic GmbH 1003100
Polystyrene particles 80 nm Polyscience, Inc. 17150
Polystyrene particles 500 nm Polyscience, Inc. 17152
EQUIPMENT
Water bath VWR 462-7001
Thermostat IKA-Werke GmbH & Co. KG 3164000
Peristaltic pumps Ismatec ISM 833
Bubble traps (glass) UNI-GLAS Laborbedarf
Flow heater UNI-GLAS Laborbedarf
Pressure sensor + Software for analyses MSR Electronics GmbH 145B5
Notebook Hewlett Packard
Miniature gas exchange oxygenator Living Systems Instrumentation LSI-OXR
Tygon Tube (ID: 1.6 mm; OD: 4.8 mm) Ismatec MF0028
Tubes for pumps (PharMed BPT; ID: 1.52 mm) Ismatec SC0744
Blunt cannulae (Ø 0.8 mm) Polymed Medical Center 03.592.81
Blunt cannulae (Ø 1.2 mm) Polymed Medical Center 03.592.90
Blunt cannulae (Ø 1.5 mm) Polymed Medical Center 03.592.94
Blunt cannulae (Ø 1.8 mm) Polymed Medical Center 03.952.82
Parafilm VWR 291-1212
Perfusion chamber with tissue holder (plexiglass) Internal technical department Similar equipment is available from Hemotek Limited, UK
Surgical suture material (PremiCron) B. Braun Medical AG C0026005
Winged Needle Infusion Set (21G Butterfly) Hospira, Inc. ASN 2102
Multidirectional stopcock (Discofix C-3) B. Braun Medical AG 16494C
Surgical scissors B. Braun Medical AG BC304R
Dissecting scissors B. Braun Medical AG BC162R
Needle holder B. Braun Medical AG BM200R
Dissecting forceps B. Braun Medical AG BD215R
Automated blood gas system Radiometer Medical ApS ABL800 FLEX
Multi-mode microplate reader BioTek Synergy HT
Liquid scintillation analyzer GMI, Inc. Packard Tri-Carb 2200
Scintillation tubes 5.5 ml Zinsser Analytic GmbH 3020001
Tissue Homogenizer OMNI, Inc. TH-220
pH meter + electrode VWR 662-2779

Riferimenti

  1. Ala-Kokko, T. I., Myllynen, P., Vahakangas, K. Ex vivo perfusion of the human placental cotyledon: implications for anesthetic pharmacology. Int. J. Obstet. Anesth. 9, 26-38 (2000).
  2. Panigel, M., Pascaud, M., Brun, J. L. Radioangiographic study of circulation in the villi and intervillous space of isolated human placental cotyledon kept viable by perfusion. J. Physiol. (Paris). 59, 277 (1967).
  3. Schneider, H., Panigel, M., Dancis, J. Transfer across the perfused human placenta of antipyrine, sodium and leucine. Am. J. Obstet. Gynecol. 114, 822-828 (1972).
  4. Enders, A. C., Blankenship, T. N. Comparative placental structure. Adv. Drug Deliv. Rev. 38, 3-15 (1999).
  5. Takata, K., Hirano, H. Mechanism of glucose transport across the human and rat placental barrier: a review. Microsc. Res. Tech. 38, 145-152 (1997).
  6. Saunders, M. Transplacental transport of nanomaterials. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 671-684 (2009).
  7. Buerki-Thurnherr, T., von Mandach, U., Wick, P. Knocking at the door of the unborn child: engineered nanoparticles at the human placental barrier. Swiss Med. Wkly. 142, w13559 (2012).
  8. Gendron, M. P., Martin, B., Oraichi, D., Berard, A. Health care providers’ requests to Teratogen Information Services on medication use during pregnancy and lactation. Eur. J. Clin. Pharmacol. 65, 523-531 (2009).
  9. Burns, L., Mattick, R. P., Lim, K., Wallace, C. Methadone in pregnancy: treatment retention and neonatal outcomes. Addiction. 102, 264-270 (2007).
  10. von Mandach, U. Drug use in pregnancy. Ther. Umsch. 62, 29-35 (2005).
  11. Malek, A., Obrist, C., Wenzinger, S., von Mandach, U. The impact of cocaine and heroin on the placental transfer of methadone. Reprod. Biol. Endocrinol. 7, 61 (2009).
  12. Hutson, J. R., Garcia-Bournissen, F., Davis, A., Koren, G. The human placental perfusion model: a systematic review and development of a model to predict in vivo transfer of therapeutic drugs. Clin. Pharmacol. Ther. 90, 67-76 (2011).
  13. International Organization for Standardization (ISO). Technical Specification (ISO/TS) 27687. Nanotechnologies – Terminology and definitions for nano-objects – Nanoparticles, nanofibre and nanoplate. , (2008).
  14. Pietroiusti, A. Health implications of engineered nanomaterials. Nanoscale. 4, 1231-1247 (2012).
  15. Latzin, P., Roosli, M., Huss, A., Kuehni, C. E., Frey, U. Air pollution during pregnancy and lung function in newborns: a birth cohort study. Eur. Respir. J. 33, 594-603 (2009).
  16. Lacasana, M., Esplugues, A., Ballester, F. Exposure to ambient air pollution and prenatal and early childhood health effects. Eur. J. Epidemiol. 20, 183-199 (2005).
  17. Menezes, V., Malek, A., Keelan, J. A. Nanoparticulate drug delivery in pregnancy: placental passage and fetal exposure. Curr. Pharm. Biotechnol. 12, 731-742 (2011).
  18. Muhlemann, K., Menegus, M. A., Miller, R. K. Cytomegalovirus in the perfused human term placenta in vitro. Placenta. 16, 367-373 (1995).
  19. Wick, P., et al. Barrier capacity of human placenta for nanosized materials. Environ. Health Perspect. 118, 432-436 (2010).
  20. Dancis, J. Why perfuse the human placenta. Contrib Gynecol. Obstet. 13, 1-4 (1985).
  21. May, K., et al. Perfusion of human placenta with hemoglobin introduces preeclampsia-like injuries that are prevented by alpha1-microglobulin. Placenta. 32, 323-332 (2011).
  22. Guller, S., et al. Protein composition of microparticles shed from human placenta during placental perfusion: Potential role in angiogenesis and fibrinolysis in preeclampsia. Placenta. 32, 63-69 (2011).
  23. Challier, J. C. Criteria for evaluating perfusion experiments and presentation of results. Contrib. Gynecol. Obstet. 13, 32-39 (1985).
  24. Kraemer, J., Klein, J., Lubetsky, A., Koren, G. Perfusion studies of glyburide transfer across the human placenta: implications for fetal safety. Am. J. Obstet. Gynecol. 195, 270-274 (2006).
  25. leal, J. K., et al. Modification of fetal plasma amino acid composition by placental amino acid exchangers in vitro. J. Physiol. 582, 871-882 (2007).
  26. athiesen, L., et al. Quality assessment of a placental perfusion protocol. Reprod. Toxicol. 30, 138-146 (2010).
  27. Myllynen, P., et al. Preliminary interlaboratory comparison of the ex vivo dual human placental perfusion system. Reprod Toxicol. 30, 94-102 (2010).
  28. Malek, A., Sager, R., Schneider, H. Maternal-fetal transport of immunoglobulin G and its subclasses during the third trimester of human pregnancy. Am. J. Reprod. Immunol. 32, 8-14 (1994).
  29. Prouillac, C., Lecoeur, S. The role of the placenta in fetal exposure to xenobiotics: importance of membrane transporters and human models for transfer studies. Drug Metab. Dispos. 38, 1623-1635 (2010).
  30. Poulsen, M. S., Rytting, E., Mose, T., Knudsen, L. E. Modeling placental transport: correlation of in vitro BeWo cell permeability and ex vivo human placental perfusion. Toxicol. In Vitro. 23, 1380-1386 (2009).
  31. Mathiesen, L., Rytting, E., Mose, T., Knudsen, L. E. Transport of benzo[alpha]pyrene in the dually perfused human placenta perfusion model: effect of albumin in the perfusion medium. Basic Clin. Pharmacol. Toxicol. 105, 181-187 (2009).
check_url/it/50401?article_type=t

Play Video

Citazione di questo articolo
Grafmüller, S., Manser, P., Krug, H. F., Wick, P., von Mandach, U. Determination of the Transport Rate of Xenobiotics and Nanomaterials Across the Placenta using the ex vivo Human Placental Perfusion Model. J. Vis. Exp. (76), e50401, doi:10.3791/50401 (2013).

View Video